Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Findings on the Evolution of Parasitism

14.01.2009
Scientists discover a conserved signaling module controlling the formation of dauer or infective larvae in nematodes

150 years after Darwin’s epochal “On the Origin of Species” many questions about the molecular basis of evolution are still waiting for answers. How are signaling pathways changed by genes and by the environment enabling the development of new species? Scientists at the Max Planck Institute for Developmental Biology in Tübingen, Germany, strive to decode the molecular basis of parasitism. Their objects of research are nematode worms.


Do the dauer stages which occur in certain nematodes and the infective larvae of their parasitic cousins share a common evolutionary basis? Analyzing the chemical signaling pathways the Tübingen scientists detected an evolutionarily conserved module which controls the fate of the worm larvae. Thus they found the first indication that infective larvae originally evolved from dauer larvae (Current Biology, January 13, 2009).

Pheromones signal deterioration of environmental conditions such as crowding caused by a large increase of the population, unfavorable temperatures or lack of food to larvae of the small nematode Caenorhabditis elegans. These signals are processed in the organism via multiple information pathways. In the end, they result in the development of the so-called dauer stage, a kind of developmental arrest of the worm before adulthood. C. elegans thus secures its survival: an active adult worm develops from this dauer stage only after the environmental conditions have become favorable again.

Because dauer larvae attach to other animals and are thus dispersed, many scientists see this as a first step towards parasitism. Indeed, parasitic nematodes invade their hosts as infective larvae, a stage with striking morphological similarities to the dauer stage of C. elegans. The details of the signaling pathways regulating the differentiation of the cells are well studied in C. elegans, but up to now there was no indication for the common origin of dauer larvae and infective larvae.

In order to identify potential conserved – i.e. unchanged in the course of evolution – signaling pathways, the research group of Ralf Sommer at the Max Planck Institute for Developmental Biology in Tübingen (Germany) examined a close relative of C. elegans, a nematode called Pristionchus pacificus. In the evolution of nematodes it represents an intermediate between C. elegans and the parasitic species of this phylum.

In the wild, Pristionchus dauer larvae associate with beetles and resume development only after the beetle’s death. They then feed on microbes developing on the decaying carcass of the beetle. Scientists call this phenomenon necromeny. The dauer form is thus an essential adaptation to the ecological niche of this nematode.

In order to find out how far evolutionarily-conserved mechanisms are involved in the formation of dauer larvae, the authors first determined whether pheromones control the formation of dauer larvae also in Pristionchus. They found that this was in fact the case. However, the pheromones involved are not the same as those present in C. elegans, although further studies showed that P. pacificus does use the same chemical mediators in response to these pheromones. The induction of the dauer stage is dependent on the production of two steroid hormones (?4-dafachronic acid and ?7-dafachronic acid) which change the binding status of the respective hormone receptor (DAF-12). Obviously, this is a conserved hormonal-endocrine module which – according to the results of the Tübingen scientists – is also present in at least one parasitic representative of the nematodes, in Strongyloides papillosus. This nematode parasitizes cattle and sheep.

Thus Max Planck scientists have provided important evidence that dauer larvae and infective larvae share a common origin. “Infective larvae evolved from dauer larvae“, says Ralf Sommer. They use the same mechanisms to determine the future fate of cells and tissues during larval development. The gradual evolution of parasitism has its origin in phenotypic plasticity, “thereby enabling the retention of a bacteria-feeding free-living life cycle as in C. elegans while already shaping an alternative feeding strategy as in Pristionchus” according to the evolutionary biologist.

Susanne Diederich | alfa
Further information:
http://www.mpg.de
http://www.eb.tuebingen.mpg.de/departments/4-evolutionary-biology/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>