Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The eyes have it

Scientists reveal how organic mercury can interfere with vision

More than one billion people worldwide rely on fish as an important source of animal protein, states the United Nations Food and Agriculture Organization. And while fish provide slightly over 7 per cent of animal protein in North America, in Asia they represent about 23 per cent of consumption.

A cross section of a zebrafish eye shows the localization of mercury in the outer segments of photoreceptor cells.

Reference: Malgorzata Korbas, Barry Lai, Stefan Vogt, Sophie-Charlotte Gleber, Chithra Karunakaran, Ingrid J. Pickering, Patrick H. Krone, and Graham N. George. "Methylmercury Targets Photoreceptor Outer Segments." ACS Chemical Biology (2013).
DOI: 10.1021/cb4004805

Humans consume low levels of methylmercury by eating fish and seafood. Methylmercury compounds specifically target the central nervous system, and among the many effects of their exposure are visual disturbances, which were previously thought to be solely due to methylmercury-induced damage to the brain visual cortex.

However, after combining powerful synchrotron X-rays and methylmercury-poisoned zebrafish larvae, scientists have found that methylmercury may also directly affect vision by accumulating in the retinal photoreceptors, i.e. the cells that respond to light in our eyes.

Dr. Gosia Korbas, BioXAS staff scientist at the Canadian Light Source (CLS), says the results of this experiment show quite clearly that methylmercury localizes in the part of the photoreceptor cell called the outer segment, where the visual pigments that absorb light reside.

“There are many reports of people affected by methylmercury claiming a constricted field of vision or abnormal colour vision,” said Korbas. “Now we know that one of the reasons for their symptoms may be that methylmercury directly targets photoreceptors in the retina.”

Korbas and the team of researchers from the University of Saskatchewan including Profs. Graham George, Patrick Krone and Ingrid Pickering conducted their experiments using three X-ray fluorescence imaging beamlines (2-ID-D, 2-ID-E and 20-ID-B) at the Advanced Photon Source, Argonne National Laboratory near Chicago, US, as well as the scanning X-ray transmission beamline (STXM) at the Canadian Light Source in Saskatoon, Canada.

After exposing zebrafish larvae to methylmercury chloride in water, the team was able to obtain high-resolution maps of elemental distributions, and pinpoint the localization of mercury in the outer segments of photoreceptor cells in both the retina and pineal gland of zebrafish specimens. The results of the research were published in ACS Chemical Biology under the title “Methylmercury Targets Photoreceptor Outer Segments”.

Korbas said zebrafish are an excellent model for investigating the mechanisms of heavy metal toxicity in developing vertebrates. One of the reasons for that is their high degree of correlation with mammals. Recent studies have demonstrated that about 70 per cent of protein-coding human genes have their counterparts in zebrafish, and 84 per cent of genes linked to human diseases can be found in zebrafish.

“Researchers are studying the potential effects of low level chronic exposure to methylmercury, which is of global concern due to methylmercury presence in fish, but the message that I want to get across is that such exposures may negatively affect vision. Our study clearly shows that we need more research into the direct effects of methylmercury on the eye,” Korbas concluded.

Acknowledgments: This work was supported by the Canadian Institutes of Health Research, the Saskatchewan Health Research Foundation and the Natural Sciences and Engineering Research Council of Canada.

About the CLS:

The Canadian Light Source is Canada’s national centre for synchrotron research and a global centre of excellence in synchrotron science and its applications. Located on the University of Saskatchewan campus in Saskatoon, the CLS has hosted 1,700 researchers from academic institutions, government, and industry from 10 provinces and territories; delivered over 26,000 experimental shifts; received over 6,600 user visits; and provided a scientific service critical in over 1,000 scientific publications, since beginning operations in 2005.

CLS operations are funded by Canada Foundation for Innovation, Natural Sciences and Engineering Research Council, Western Economic Diversification Canada, National Research Council of Canada, Canadian Institutes of Health Research, the Government of Saskatchewan and the University of Saskatchewan.

Synchrotrons work by accelerating electrons in a tube at nearly the speed of light using powerful magnets and radio frequency waves. By manipulating the electrons, scientists can select different forms of very bright light using a spectrum of X-ray, infrared, and ultraviolet light to conduct experiments.

Synchrotrons are used to probe the structure of matter and analyze a host of physical, chemical, geological and biological processes. Information obtained by scientists can be used to help design new drugs, examine the structure of surfaces in order to develop more effective motor oils, build more powerful computer chips, develop new materials for safer medical implants, and help clean-up mining wastes, to name a few applications.

Mark Ferguson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>