Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experience leads to the growth of new brain cells

10.05.2013
A new study examines how individuality develops

How do organisms evolve into individuals that are distinguished from others by their own personal brain structure and behaviour? Scientists in Dresden, Berlin, Münster, and Saarbrücken have now taken a decisive step towards clarifying this question.


In an environment with many stimuli, mice experience it differently. In one mouse (right) it leads to many new neurons (black dots), while in another mouse (left), significantly fewer new neurons develop.
© CRTD / DZNE / Freund

Using mice as an animal model, they were able to show that individual experiences influence the development of new neurons, leading to measurable changes in the brain. The results of this study are published in Science on May 10th. The DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence at the TU Dresden (CRTD), the Dresden site of the German Center for Neurodegenerative Diseases (DZNE), and the Max Planck Institute for Human Development in Berlin played a pivotal role in the study.

The adult brain continues to grow with the challenges that it faces; its changes are linked to the development of personality and behaviour. But what is the link between individual experience and brain structure? Why do identical twins not resemble each other perfectly even when they grew up together? To shed light on these questions, the scientists observed forty genetically identical mice that were kept in an enclosure offering a large variety of activity and exploration options.

The animals were not only genetically identical, they were also living in the same environment,” explains principal investigator Gerd Kempermann, Professor for Genomics of Regeneration, CRTD, and site speaker of the DZNE in Dresden. “However, this environment was so rich that each mouse gathered its own individual experiences in it. Over time, the animals therefore increasingly differed in their realm of experience and behaviour.”

New neurons for individualized brains

Each of the mice was equipped with a special micro-chip emitting electromagnetic signals. This allowed the scientists to reconstruct the mice’s movement profiles and to quantify their exploratory behaviour. The result: Despite a common environment and identical genes the mice showed highly individualized behavioural patterns. They reacted to their environment differently. In the course of the three-month experiment these differences increased in size.

Though the animals shared the same life space, they increasingly differed in their activity levels. These differences were associated with differences in the generation of new neurons in the hippocampus, a region of the brain that supports learning and memory,” says Kempermann. “Animals that explored the environment to a greater degree also grew more new neurons than animals that were more passive.”

Adult neurogenesis, that is, the generation of new neurons in the hippocampus, allows the brain to react to new information flexibly. With this study, the authors show for the first time that personal experiences and ensuing behaviour contribute to the „individualization of the brain.“ The individualization they observed cannot be reduced to differences in environment or genetic makeup.

Adult neurogenesis also occurs in the hippocampus of humans,” says Kempermann. “Hence we assume that we have tracked down a neurobiological foundation for individuality that also applies to humans.”

Impulses for discussion across disciplines

The finding that behaviour and experience contribute to differences between individuals has implications for debates in psychology, education science, biology, and medicine,“ states Prof. Ulman Lindenberger, Director of the Center for Lifespan Psychology at the Max Planck Institute for Human Development (MPIB) in Berlin. “Our findings show that development itself contributes to differences in adult behaviour. This is what many have assumed, but now there is direct neurobiological evidence in support of this claim. Our results suggest that experience influences the ageing of the human mind.“

In the study, a control group of animals housed in a relatively unattractive enclosure was also examined; on average, neurogenesis in these animals was lower than in the experimental mice. „When viewed from educational and psychological perspectives, the results of our experiment suggest that an enriched environment fosters the development of individuality,“ comments Lindenberger.

Interdisciplinary Teamwork

The study is also an example of multidisciplinary cooperation — it was made possible because neuroscientists, ethologists, computer scientists, and developmental psychologists collaborated closely in designing the experimental set-up and applying new data analysis methods. Biologist Julia Freund from the CRTD Dresden and computer scientist Dr. Andreas Brandmaier from the MPIB in Berlin share first authorship on the article. In addition to the DZNE, CRTD, and the MPIB, the German Research Center for Artificial Intelligence in Saarbrücken and the Institute for Geoinformatics and the Department of Behavioural Biology at the University of Münster were also involved in this project.

Contact

Prof. Dr. Gerd Kempermann
Research group leader of the CRTD & site speaker at DZNE Dresden
German Center for Neurodegenerative Diseases within the Helmholtz Association (DZNE)
Phone: +49 351 458-82201
Email: gerd.kempermann@­dzne.de
Prof. Dr. Ulman Lindenberger
Max Planck Institute for Human Development, Berlin
Phone: +49 30 82406-572
Fax: +49 30 82499-571
Email: seklindenberger@­mpib-berlin.mpg.de
Prof. Dr. Norbert Sachser
Department of Behavioural Biology University of Münster
University of Münster
Phone: +49 251 83-23884
Email: sachser@­uni-muenster.de
Dr. Britta Grigull
Press and Public Relations
Max Planck Institute for Human Development, Berlin
Phone: +49 30 82406-211
Email: grigull@­mpib-berlin.mpg.de

Original publication
Julia Freund, Andreas M. Brandmaier, Lars Lewejohann, Imke Kirste, Mareike Kritzler, Antonio Krüger, Norbert Sachser, Ulman Lindenberger, Gerd Kempermann
Emergence of Individuality in Genetically Identical Mice
Science

Prof. Dr. Gerd Kempermann | GFZ Potsdam
Further information:
http://www.mpg.de/7241875/individuality?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>