Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution on the Inside Track: Penn Study Shows How Viruses in Gut Bacteria Change Over Time

29.07.2013
Implications for Deciphering Differences in Disease Susceptibility, Drug Resistance and Effectiveness

Humans are far more than merely the sum total of all the cells that form the organs and tissues. The digestive tract is also home to a vast colony of bacteria of all varieties, as well as the myriad viruses that prey upon them. Because the types of bacteria carried inside the body vary from person to person, so does this viral population, known as the virome.

By closely following and analyzing the virome of one individual over two-and-a-half years, researchers from the Perelman School of Medicine at the University of Pennsylvania, led by professor of Microbiology Frederic D. Bushman, Ph.D., have uncovered some important new insights on how a viral population can change and evolve – and why the virome of one person can vary so greatly from that of another. The evolution and variety of the virome can affect susceptibility and resistance to disease among individuals, along with variable effectiveness of drugs.

Their work was published in the Proceedings of the National Academy of Sciences.

Most of the virome consists of bacteriophages, viruses that infect bacteria rather than directly attacking their human hosts. However, the changes that bacteriophages wreak upon bacteria can also ultimately affect humans.

“Bacterial viruses are predators on bacteria, so they mold their populations,” says Bushman. “Bacterial viruses also transport genes for toxins, virulence factors that modify the phenotype of their bacterial host.” In this way, an innocent, benign bacterium living inside the body can be transformed by an invading virus into a dangerous threat.

At 16 time points over 884 days, Bushman and his team collected stool samples from a healthy male subject and extracted viral particles using several methods. They then isolated and analyzed DNA contigs (contiguous sequences) using ultra-deep genome sequencing .

“We assembled raw sequence data to yield complete and partial genomes and analyzed how they changed over two and a half years,” Bushman explains. The result was the longest, most extensive picture of the workings of the human virome yet obtained.

The researchers found that while approximately 80 percent of the viral types identified remained mostly unchanged over the course of the study, certain viral species changed so substantially over time that, as Bushman notes, “You could say we observed speciation events.”

This was particularly true in the Microviridae group, which are bacteriophages with single-stranded circular DNA genomes. Several genetic mechanisms drove the changes, including substitution of base chemicals; diversity-generating retroelements, in which reverse transcriptase enzymes introduce mutations into the genome; and CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats), in which pieces of the DNA sequences of bacteriophages are incorporated as spacers in the genomes of bacteria.

Such rapid evolution of the virome was perhaps the most surprising finding for the research team. Bushman notes that “different people have quite different bacteria in their guts, so the viral predators on those bacteria are also different. However, another reason people are so different from each other in terms of their virome, emphasized in this paper, is that some of the viruses, once inside a person, are changing really fast. So some of the viral community diversifies and becomes unique within each individual.”

Since humans acquire the bacterial population -- and its accompanying virome -- after birth from food and other environmental factors, it’s logical that the microbial population living within each of us would differ from person to person. But this work, say the researchers, demonstrates that another major explanatory factor is the constant evolution of the virome within the body. That fact has important implications for the ways in which susceptibility and resistance to disease can differ among individuals, as well as the effectiveness of various drugs and other treatments.

The research was supported by Human Microbiome Roadmap Demonstration Project (UH2DK083981) the Penn Genome Frontiers Institute, and the University of Pennsylvania Center for AIDS Research (CFAR; P30 Al 045008).

Samuel Minot, Alexandra Bryson, Christel Chehoud, Gary D. Wu, James D. Lewis, all from Penn, are co-authors.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>