Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Erratic proteins: new insights into a transport mechanism

30.09.2013
The outer membrane of bacteria contains many proteins that form tiny pores. They are important for absorbing nutrients and transmitting signals into the cell.

The research group of Sebastian Hiller, Professor of Structural Biology at the Biozentrum, University of Basel, has now shown for the first time at atomic resolution, that these pore proteins are transported in an unstructured, constantly changing state to the outer bacterial membrane. This landmark study was recently published in the scientific journal “Nature Structural and Molecular Biology”.

The cell membrane of a bacterium is a natural barrier to the environment and at the same time, their door to the world. Gram-negative bacteria surround themselves with two membrane layers. They communicate with the environment through proteins that form tiny pores in the outer cell membrane. How these membrane proteins reach their target destination in the bacterium Escherichia coli could now be observed for the first time at the atomic level by Professor Sebastian Hiller, from the Biozentrum at the University of Basel.

Molecular “ferry” ensures safe protein transport
New proteins are produced in the protein factories inside the cell. Proteins destined for the outer membrane require a molecular “ferry” to remain intact as they pass the aqueous layer between the two membranes. The protein Skp is such a ferry, transporting the not yet folded proteins across the periplasmic space. At the outer membrane, they fold into their three-dimensional structure and incorporate into the outer membrane.

The current study by Hiller provides an exceptional and deep insight into this transport mechanism. The membrane protein is loosely embedded in the solid structure of Skp during transport and does not adopt on a defined spatial structure itself. “Amazingly, the unfolded protein changes its state constantly – faster than thousand times per second and more than ten million times during the crossing,” explained Hiller. “Only through employing modern nuclear magnetic resonance spectroscopy, it has become possible to detect this dynamic behavior within Skp.” Transporting the membrane protein in such a changing state does not require energy and allows for its rapid release at the destination.

Dynamic transport as a general principle
Although the structure of Skp has been known for a long time, the current study shows that the dynamics of the Skp-membrane protein complex is important for the formation of the outer membrane proteins. With the atomic resolution measurements, Hiller and his team were also able to uncover a general principle how proteins can be transported without requiring energy. In the future, the team of scientists wants to investigate further proteins that are involved in the transport and folding process.
Original Source
Björn M Burmann, Congwei Wang & Sebastian Hiller (2013)
Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp

Nature Structural & Molecular Biology, Published online 29 September 2013 | doi: 10.1038/nsmb.2677

Reto Caluori | idw
Further information:
http://www.unibas.ch
http://www.unibas.ch/index.cfm?uuid=96855398D62121F8339989EA09D23513&type=search&show_long=1&o_lang_id=2

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>