Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme controlling cell death paves way for treatment of brain damage in newborns

25.10.2011
Brain damage due to birth asphyxia – where the brain is starved of oxygen around the time of delivery – is normally treated by cooling the infant, but this only helps one baby in nine. New research from the Sahlgrenska Academy at the University of Gothenburg, Sweden, could now pave the way for new ways of treating brain damage in newborns.

Birth asphyxia can cause irreparable brain damage and lifelong handicaps, including cerebral palsy, epilepsy and mental retardation. The brain damage evolves over a time period of hours to days after the injury. This opens up a therapeutic window where we are able to affect outcome. Birth asphyxia is normally treated by cooling the infant, which has been shown to reduce the risk of lasting problems.

Saves only one in nine
Unfortunately this therapy stops only one child in nine from suffering brain damage. Furthermore, premature babies cannot be treated in this way. In her doctoral thesis, Ylva Carlsson has therefore attempted to find a new treatment strategy that can be used not only in combination with cooling therapy but also to help children where cooling therapy is not an option.
Mapping the key enzyme
The focus is on an enzyme which controls elements of the apoptosis – cell death – associated with the brain damage.

"We’ve mapped the role this enzyme plays in the development of brain damage in newborns who suffer from birth asphyxia," says Carlsson. "The results show that a reduction in the amount of this enzyme also reduces the extent of the brain damage. Added protection is given if cooling therapy is used too."

Age affects brain damage
Based on a study of mice, Carlsson is also able to show in her thesis that the mechanisms behind brain damage vary according to the age of the brain: a treatment that can protect adults turned out to exacerbate the damage in newborns.
Tailor-made treatments
"This may mean that some drugs developed for brain damage in adults should probably not be given to newborn babies," says Carlsson. "Tailor-made treatments targeting specific brain damage mechanisms and combination treatments for children may therefore be the way forward. But first we need to look more closely at how best to control these proteins without disrupting other key functions in the growing brain."
For more information, please contact: Ylva Carlsson
Mobile: +46 (0)703 641 240
Email: ylva.carlsson@vgregion.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>