Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme controlling cell death paves way for treatment of brain damage in newborns

25.10.2011
Brain damage due to birth asphyxia – where the brain is starved of oxygen around the time of delivery – is normally treated by cooling the infant, but this only helps one baby in nine. New research from the Sahlgrenska Academy at the University of Gothenburg, Sweden, could now pave the way for new ways of treating brain damage in newborns.

Birth asphyxia can cause irreparable brain damage and lifelong handicaps, including cerebral palsy, epilepsy and mental retardation. The brain damage evolves over a time period of hours to days after the injury. This opens up a therapeutic window where we are able to affect outcome. Birth asphyxia is normally treated by cooling the infant, which has been shown to reduce the risk of lasting problems.

Saves only one in nine
Unfortunately this therapy stops only one child in nine from suffering brain damage. Furthermore, premature babies cannot be treated in this way. In her doctoral thesis, Ylva Carlsson has therefore attempted to find a new treatment strategy that can be used not only in combination with cooling therapy but also to help children where cooling therapy is not an option.
Mapping the key enzyme
The focus is on an enzyme which controls elements of the apoptosis – cell death – associated with the brain damage.

"We’ve mapped the role this enzyme plays in the development of brain damage in newborns who suffer from birth asphyxia," says Carlsson. "The results show that a reduction in the amount of this enzyme also reduces the extent of the brain damage. Added protection is given if cooling therapy is used too."

Age affects brain damage
Based on a study of mice, Carlsson is also able to show in her thesis that the mechanisms behind brain damage vary according to the age of the brain: a treatment that can protect adults turned out to exacerbate the damage in newborns.
Tailor-made treatments
"This may mean that some drugs developed for brain damage in adults should probably not be given to newborn babies," says Carlsson. "Tailor-made treatments targeting specific brain damage mechanisms and combination treatments for children may therefore be the way forward. But first we need to look more closely at how best to control these proteins without disrupting other key functions in the growing brain."
For more information, please contact: Ylva Carlsson
Mobile: +46 (0)703 641 240
Email: ylva.carlsson@vgregion.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>