Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enzyme controlling cell death paves way for treatment of brain damage in newborns

Brain damage due to birth asphyxia – where the brain is starved of oxygen around the time of delivery – is normally treated by cooling the infant, but this only helps one baby in nine. New research from the Sahlgrenska Academy at the University of Gothenburg, Sweden, could now pave the way for new ways of treating brain damage in newborns.

Birth asphyxia can cause irreparable brain damage and lifelong handicaps, including cerebral palsy, epilepsy and mental retardation. The brain damage evolves over a time period of hours to days after the injury. This opens up a therapeutic window where we are able to affect outcome. Birth asphyxia is normally treated by cooling the infant, which has been shown to reduce the risk of lasting problems.

Saves only one in nine
Unfortunately this therapy stops only one child in nine from suffering brain damage. Furthermore, premature babies cannot be treated in this way. In her doctoral thesis, Ylva Carlsson has therefore attempted to find a new treatment strategy that can be used not only in combination with cooling therapy but also to help children where cooling therapy is not an option.
Mapping the key enzyme
The focus is on an enzyme which controls elements of the apoptosis – cell death – associated with the brain damage.

"We’ve mapped the role this enzyme plays in the development of brain damage in newborns who suffer from birth asphyxia," says Carlsson. "The results show that a reduction in the amount of this enzyme also reduces the extent of the brain damage. Added protection is given if cooling therapy is used too."

Age affects brain damage
Based on a study of mice, Carlsson is also able to show in her thesis that the mechanisms behind brain damage vary according to the age of the brain: a treatment that can protect adults turned out to exacerbate the damage in newborns.
Tailor-made treatments
"This may mean that some drugs developed for brain damage in adults should probably not be given to newborn babies," says Carlsson. "Tailor-made treatments targeting specific brain damage mechanisms and combination treatments for children may therefore be the way forward. But first we need to look more closely at how best to control these proteins without disrupting other key functions in the growing brain."
For more information, please contact: Ylva Carlsson
Mobile: +46 (0)703 641 240

Helena Aaberg | idw
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>