Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering algae to make fuel instead of sugar

18.12.2008
Optics Express research describes how tiny organism can make biofuel

In pursuing cleaner energy there is such a thing as being too green. Unicellular microalgae, for instance, can be considered too green. In a paper in a special energy issue of Optics Express, the Optical Society's (OSA) open-access journal, scientists at the University of California, Berkeley describe a method for using microalgae for making biofuel.

The researchers explain a way to genetically modify the tiny organisms, so as to minimize the number of chlorophyll molecules needed to harvest light without compromising the photosynthesis process in the cells. With this modification, instead of making more sugar molecules, the microalgae could be producing hydrogen or hydrocarbons.

Berkeley researchers have identified the genetic instructions in the algae genome responsible for deploying approximately 600 chlorophyll molecules in the cell's light-gathering antennae. They believe that the algae can get along with as few as 130 molecules. Basically the scientists want to divert the normal function of photosynthesis from generating biomass to making products such as lipids, hydrocarbons, and hydrogen.

Tasios Melis, one of the paper's co-authors, argues that the algae's chlorophyll antennae help the organisms compete for sunlight absorption and survive in the wild, where sunlight is often limited, but is detrimental to the engineering-driven effort of using algae to convert sunlight into biofuel.

Melis uses the phrase "cellular optics" to describe this general effort to maximize the efficiency of the solar-to-product conversion process. Besides getting the algae to convert more sunlight to fuel, another issue that needs to be addressed is how to configure bio-culture tanks in such a way that sunlight can penetrate the outer layer of algae so that lower-down layers can participate in the photo-conversion too.

Microalgae are ideal because of their high rate of photosynthesis; they are perhaps ten times more efficient in this than the land plants—such as sugarcane, corn, and switchgrass—often discussed as possible biofuel stocks.

How soon can algae play a role? According to Melis, "Progress is substantial to date, but not enough to make the process commercially competitive with fossil fuels. Further improvement in the performance of photosynthesis under mass culture conditions, and in the yield of "biofuels" by the microalgae are needed before a cost parity with traditional fuels can be achieved."

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>