Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering algae to make fuel instead of sugar

18.12.2008
Optics Express research describes how tiny organism can make biofuel

In pursuing cleaner energy there is such a thing as being too green. Unicellular microalgae, for instance, can be considered too green. In a paper in a special energy issue of Optics Express, the Optical Society's (OSA) open-access journal, scientists at the University of California, Berkeley describe a method for using microalgae for making biofuel.

The researchers explain a way to genetically modify the tiny organisms, so as to minimize the number of chlorophyll molecules needed to harvest light without compromising the photosynthesis process in the cells. With this modification, instead of making more sugar molecules, the microalgae could be producing hydrogen or hydrocarbons.

Berkeley researchers have identified the genetic instructions in the algae genome responsible for deploying approximately 600 chlorophyll molecules in the cell's light-gathering antennae. They believe that the algae can get along with as few as 130 molecules. Basically the scientists want to divert the normal function of photosynthesis from generating biomass to making products such as lipids, hydrocarbons, and hydrogen.

Tasios Melis, one of the paper's co-authors, argues that the algae's chlorophyll antennae help the organisms compete for sunlight absorption and survive in the wild, where sunlight is often limited, but is detrimental to the engineering-driven effort of using algae to convert sunlight into biofuel.

Melis uses the phrase "cellular optics" to describe this general effort to maximize the efficiency of the solar-to-product conversion process. Besides getting the algae to convert more sunlight to fuel, another issue that needs to be addressed is how to configure bio-culture tanks in such a way that sunlight can penetrate the outer layer of algae so that lower-down layers can participate in the photo-conversion too.

Microalgae are ideal because of their high rate of photosynthesis; they are perhaps ten times more efficient in this than the land plants—such as sugarcane, corn, and switchgrass—often discussed as possible biofuel stocks.

How soon can algae play a role? According to Melis, "Progress is substantial to date, but not enough to make the process commercially competitive with fossil fuels. Further improvement in the performance of photosynthesis under mass culture conditions, and in the yield of "biofuels" by the microalgae are needed before a cost parity with traditional fuels can be achieved."

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>