Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Encoding unchartered territory

28.03.2011
Ensembles of neurons in the brain’s hippocampus inform about future as well as past experiences

When a mammal explores an unfamiliar environment, ensembles of ‘place’ cells in the hippocampus fire individually, recording specific locations in a cognitive map that aid future spatial navigation of the area.

Once the relationship between place cell activity and location has been established, the activity of the cells can be used to predict the animal’s location within its environment. Activity patterns in the ensembles are later ‘replayed’ during rest and sleep, and neuroscientists believe this is important for consolidating the spatial memories of the new environment.

Neuroscientists also contend that the sequence of place cell firing corresponding to the new environment is established during the first exploration of that environment. Now George Dragoi and Susumu Tonegawa from the RIKEN-MIT Center for Neural Circuit Genetics at the Massachusetts Institute of Technology in Cambridge, Massachusetts, report that the activity of place cell circuits is also preconfigured to encode novel environments[1].

Dragoi and Tonegawa recorded the activity patterns of place cells in the CA1 region of the hippocampus while mice navigated a familiar environment. They also recorded from the same cells afterwards, while the mice rested or slept. As expected, some of the place cell activity patterns they observed corresponded to the familiar environment that the animals had explored, but they also recorded new patterns from place cells that were previously silent.

The researchers found that the novel activity patterns corresponded strongly to the sequences of place cell firing that were recorded when the mice subsequently explored an unfamiliar part of the environment (Fig. 1). This suggests that the activity patterns represent ‘preplay’ of the unexplored locations rather than replay of the familiar part of the environment. Thus, the activity of hippocampal place cells appears not only to consolidate spatial memories of newly experienced environments, but also to predict how novel, unexplored environments can be encoded when they are navigated in the future. The researchers also suggest that hippocampal preplay may accelerate spatial memory formation once the novel environment is eventually explored.

“Encoding of new information makes use of the pre-existing organization of the hippocampal network, and will stabilize faster compared to a case when the neuronal network has to re-organize to a new state that does not resemble the pre-existing one,” says Dragoi. “In an immediate follow-up to this study, we will address the role of the intact hippocampal circuitry in the mechanisms and dynamics of the preplay phenomenon,” he adds.

The corresponding author for this highlight is based at the RIKEN_MIT Center for Neural Circuit Genetics

Journal information

[1] Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6550
http://www.researchsea.com

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>