Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Encoding unchartered territory

28.03.2011
Ensembles of neurons in the brain’s hippocampus inform about future as well as past experiences

When a mammal explores an unfamiliar environment, ensembles of ‘place’ cells in the hippocampus fire individually, recording specific locations in a cognitive map that aid future spatial navigation of the area.

Once the relationship between place cell activity and location has been established, the activity of the cells can be used to predict the animal’s location within its environment. Activity patterns in the ensembles are later ‘replayed’ during rest and sleep, and neuroscientists believe this is important for consolidating the spatial memories of the new environment.

Neuroscientists also contend that the sequence of place cell firing corresponding to the new environment is established during the first exploration of that environment. Now George Dragoi and Susumu Tonegawa from the RIKEN-MIT Center for Neural Circuit Genetics at the Massachusetts Institute of Technology in Cambridge, Massachusetts, report that the activity of place cell circuits is also preconfigured to encode novel environments[1].

Dragoi and Tonegawa recorded the activity patterns of place cells in the CA1 region of the hippocampus while mice navigated a familiar environment. They also recorded from the same cells afterwards, while the mice rested or slept. As expected, some of the place cell activity patterns they observed corresponded to the familiar environment that the animals had explored, but they also recorded new patterns from place cells that were previously silent.

The researchers found that the novel activity patterns corresponded strongly to the sequences of place cell firing that were recorded when the mice subsequently explored an unfamiliar part of the environment (Fig. 1). This suggests that the activity patterns represent ‘preplay’ of the unexplored locations rather than replay of the familiar part of the environment. Thus, the activity of hippocampal place cells appears not only to consolidate spatial memories of newly experienced environments, but also to predict how novel, unexplored environments can be encoded when they are navigated in the future. The researchers also suggest that hippocampal preplay may accelerate spatial memory formation once the novel environment is eventually explored.

“Encoding of new information makes use of the pre-existing organization of the hippocampal network, and will stabilize faster compared to a case when the neuronal network has to re-organize to a new state that does not resemble the pre-existing one,” says Dragoi. “In an immediate follow-up to this study, we will address the role of the intact hippocampal circuitry in the mechanisms and dynamics of the preplay phenomenon,” he adds.

The corresponding author for this highlight is based at the RIKEN_MIT Center for Neural Circuit Genetics

Journal information

[1] Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6550
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>