Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Encoding unchartered territory

28.03.2011
Ensembles of neurons in the brain’s hippocampus inform about future as well as past experiences

When a mammal explores an unfamiliar environment, ensembles of ‘place’ cells in the hippocampus fire individually, recording specific locations in a cognitive map that aid future spatial navigation of the area.

Once the relationship between place cell activity and location has been established, the activity of the cells can be used to predict the animal’s location within its environment. Activity patterns in the ensembles are later ‘replayed’ during rest and sleep, and neuroscientists believe this is important for consolidating the spatial memories of the new environment.

Neuroscientists also contend that the sequence of place cell firing corresponding to the new environment is established during the first exploration of that environment. Now George Dragoi and Susumu Tonegawa from the RIKEN-MIT Center for Neural Circuit Genetics at the Massachusetts Institute of Technology in Cambridge, Massachusetts, report that the activity of place cell circuits is also preconfigured to encode novel environments[1].

Dragoi and Tonegawa recorded the activity patterns of place cells in the CA1 region of the hippocampus while mice navigated a familiar environment. They also recorded from the same cells afterwards, while the mice rested or slept. As expected, some of the place cell activity patterns they observed corresponded to the familiar environment that the animals had explored, but they also recorded new patterns from place cells that were previously silent.

The researchers found that the novel activity patterns corresponded strongly to the sequences of place cell firing that were recorded when the mice subsequently explored an unfamiliar part of the environment (Fig. 1). This suggests that the activity patterns represent ‘preplay’ of the unexplored locations rather than replay of the familiar part of the environment. Thus, the activity of hippocampal place cells appears not only to consolidate spatial memories of newly experienced environments, but also to predict how novel, unexplored environments can be encoded when they are navigated in the future. The researchers also suggest that hippocampal preplay may accelerate spatial memory formation once the novel environment is eventually explored.

“Encoding of new information makes use of the pre-existing organization of the hippocampal network, and will stabilize faster compared to a case when the neuronal network has to re-organize to a new state that does not resemble the pre-existing one,” says Dragoi. “In an immediate follow-up to this study, we will address the role of the intact hippocampal circuitry in the mechanisms and dynamics of the preplay phenomenon,” he adds.

The corresponding author for this highlight is based at the RIKEN_MIT Center for Neural Circuit Genetics

Journal information

[1] Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6550
http://www.researchsea.com

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>