Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The duck genome provides new insight into fighting bird flu

10.06.2013
The duck genome provides new insight into fighting bird flu-- the latest study was published online in Nature Genetics

The duck genome consortium, consisted of scientists from China Agricultural University, BGI, University of Edinburgh and other institutes has completed the genome sequencing and analysis of the duck (Anas platyrhynchos), one principal natural host of influenza A viruses, which caused a new epidemic in China since this February. This work reveals some noteworthy conclusions and provides an invaluable resource for unraveling the interactive mechanisms between the host and influenza viruses.

The new H7N9 bird flu strain killed 36 people and caused $6.5 billion loss to China's economy. As a natural host of influenza A viruses (including H5N1), the duck is known to often remain asymptomatic under influenza infection. To uncover the interactive mechanisms between the host and influenza viruses, researchers sequenced the genome of a 10-week-old female Beijing duck, and conducted transcriptomic studies on two virus-infected ducks.

This work yielded the draft sequence of a waterfowl-duck for the first time, and the data indicated that the duck, like the chicken and zebra finch, possessed a contractive immune gene repertoire comparing to those in mammals, and it also comprises novel genes that are not present in the other three birds (chicken, zebra finch and turkey).

By comparing gene expression in the lungs of ducks infected with either highly or weakly pathogenic avian influenza H5N1 viruses, the team identified genes whose expression patterns were altered in response to avian influenza viruses. They also identify factors that may be involved in duck host immune response to avian virus infection, including the avian and mammalian -defensin gene families.

Jianwen Li, project manager from BGI, said, "This study provides very important data to better understand the interaction between the host and the avian influenza. Scientists will be able to explore more deeply the mechanisms on the spread and infection of avian influenza."

About BGI

BGI was founded in Beijing, China, in 1999 with the mission to become a premier scientific partner for the global research community. The goal of BGI is to make leading-edge genomic science highly accessible, which it achieves through its investment in infrastructure, leveraging the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research: research that has generated over 200 publications in top-tier journals such as Nature and Science. BGI's many accomplishments include: sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, more recently, have sequenced the human Gut Metagenome, and a significant proportion of the genomes for the 1000 Genomes Project.

For more information about BGI, please visit http://www.genomics.cn.

Media contact:

Bicheng Yang
Public Communications Officer
BGI
Tel: +86-755-82639701
Email: yangbicheng@genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>