Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The duck genome provides new insight into fighting bird flu

10.06.2013
The duck genome provides new insight into fighting bird flu-- the latest study was published online in Nature Genetics

The duck genome consortium, consisted of scientists from China Agricultural University, BGI, University of Edinburgh and other institutes has completed the genome sequencing and analysis of the duck (Anas platyrhynchos), one principal natural host of influenza A viruses, which caused a new epidemic in China since this February. This work reveals some noteworthy conclusions and provides an invaluable resource for unraveling the interactive mechanisms between the host and influenza viruses.

The new H7N9 bird flu strain killed 36 people and caused $6.5 billion loss to China's economy. As a natural host of influenza A viruses (including H5N1), the duck is known to often remain asymptomatic under influenza infection. To uncover the interactive mechanisms between the host and influenza viruses, researchers sequenced the genome of a 10-week-old female Beijing duck, and conducted transcriptomic studies on two virus-infected ducks.

This work yielded the draft sequence of a waterfowl-duck for the first time, and the data indicated that the duck, like the chicken and zebra finch, possessed a contractive immune gene repertoire comparing to those in mammals, and it also comprises novel genes that are not present in the other three birds (chicken, zebra finch and turkey).

By comparing gene expression in the lungs of ducks infected with either highly or weakly pathogenic avian influenza H5N1 viruses, the team identified genes whose expression patterns were altered in response to avian influenza viruses. They also identify factors that may be involved in duck host immune response to avian virus infection, including the avian and mammalian -defensin gene families.

Jianwen Li, project manager from BGI, said, "This study provides very important data to better understand the interaction between the host and the avian influenza. Scientists will be able to explore more deeply the mechanisms on the spread and infection of avian influenza."

About BGI

BGI was founded in Beijing, China, in 1999 with the mission to become a premier scientific partner for the global research community. The goal of BGI is to make leading-edge genomic science highly accessible, which it achieves through its investment in infrastructure, leveraging the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research: research that has generated over 200 publications in top-tier journals such as Nature and Science. BGI's many accomplishments include: sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, more recently, have sequenced the human Gut Metagenome, and a significant proportion of the genomes for the 1000 Genomes Project.

For more information about BGI, please visit http://www.genomics.cn.

Media contact:

Bicheng Yang
Public Communications Officer
BGI
Tel: +86-755-82639701
Email: yangbicheng@genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>