Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old drug may teach new tricks in treating infectious diseases, cancer

31.10.2013
Meclizine, an over-the-counter drug used for decades to treat nausea and motion sickness, has the potential for new uses to treat certain infectious diseases and some forms of cancer, according to Dr. Vishal M. Gohil, Texas A&M AgriLife Research biochemist.

"Clearly this drug has many potential new applications," Gohil said. "And now that we know its new target within the cell, we can start to explore ways of using it to treat other diseases. We can 'repurpose' this drug."

The research on meclizine appears in the current online version of the Journal of Biological Chemistry.

"We found a particular enzyme which is inhibited by meclizine has been proposed (in other research) to be a drug target for the treatment of many diseases, including infectious diseases like malaria and African sleeping sickness," Gohil said. "And this pathway has also been proposed to be a critical pathway for the proliferation of cancer cells."

Gohil said his research, which included collaboration with scientists at Harvard Medical School and Massachusetts General Hospital, the University of Rochester and the University of Guelph, had already shown that the drug also works in the treatment of heart attack and stroke.

Meclizine is an antihistamine, synthesized in the 1950s and later found to be useful for treating nausea, motion sickness and vertigo.

Gohil, who also is an assistant professor of biochemistry and biophysics at Texas A&M University, said he started working on the compound when he identified it in a drug-screening experiment aimed at discovering compounds or drugs that inhibit mitochondrial respiration, a process that provides energy to cells.

Mitochondria are structures found in the cells of all eukaryotes, organisms with one or more cells containing a nuclei and organelles that perform specific tasks. Enclosed in membrane, mitochondria are responsible for supplying the cell with energy and are connected to a cell's life and death.

"When that drug screen identified meclizine, it was a bit of a surprise for us, because this compound had been in the market for several years and had never been linked to mitochondrial respiration," Gohil said. "It's a known drug, and was known to target a few of the molecules within the cell."

But unlike other classes of antihistamine, he noted, meclizine has a unique property which allows it to be used for the treatment of nausea and motion sickness, while most other antihistamines cannot.

"So there was this unique thing about this particular antihistamine," Gohil noted. "And it is well-tolerated so the toxicological profile is very acceptable, so it doesn't have to be sold under strict regulations."

"With that kind of profile, when we saw it in our drug screen we got excited about it because we could see that it decreases cellular oxygen consumption or respiration," he said. "We started trying to figure out the mechanism and to see if it could have any clinical benefit and application."

Gohil said for certain diseases like stroke, heart attack and some neurological diseases, previous medical research has shown that if mitochondrial respiration can be turned down, it could be beneficial for treatment.

"The way many of the cells die during the heart attack or stroke is connected to mitochondrial respiration, so the idea was that if you can turn down the respiration, then it will prevent death," he said. "This is exactly what we found when used meclizine in models of heart attack, stroke and even Huntington disease. We have a drug with a known clinical use and have identified a new biochemical target within the cells, so that opens up new applications."

He said when he and colleagues started studying the mechanism of this drug in terms of how it is inhibiting mitochondrial respiration, they made a couple of fundamental observations. "First, when we add this drug to the whole cells, we see reduced respiration, not rapidly but slowly," he said.

The researchers then added the drug to isolated mitochondria, which is the main site of respiration within the cells.

"But we did not see an effect, so that gave us the idea that this drug may not be directly targeting one of the enzymes of mitochondria which are required for or participates in consuming oxygen," Gohil said. "We used that clue to figure out how non-mitochondrial pathways could be targeted by this drug."

He used an unbiased metabolic profiling approach, a new technology that gives a snapshot of metabolite levels before and after the treatment of a drug so researchers can get an idea of how this drug is perturbing these metabolites.

"Through metabolic profiling, we found one particular metabolite - phosphoethanolamine - was in fact 'going through the roof' within a few hours of the treatment," Gohil said. "We got excited about that."

He explained that phosphoethanolamine is an intermediate in a biosynthetic pathway of a common phospholipid that forms the membrane around the cells. It is present in all living matter from the lower organisms such as bacteria all the way to humans. Thus, finding that the metabolite that was elevated when cells were treated with meclizine indicated a link between this pathway, or metabolite, and respiration.

"Our research showed that if we just take this metabolite and directly add it to mitochondria, it actually inhibits the respiration," Gohil said. "The reason we could use the drug for infectious disease or cancer is not because it inhibits respiration but because it inhibits a phospholipid biosynthetic enzyme that is required to form the building blocks of membranes."

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>