Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery: Yeast make plant hormone that speeds infection

In a paper in the journal Genetics, a research team at Worcester Polytechnic Institute reports that yeast produce a hormone previously known to be made by plants, and that the hormone can trigger fungal cells to become more infectious

In their ongoing studies of how yeast (fungi) can infect a host and cause disease, a research team at the Life Sciences and Bioengineering Center at Worcester Polytechnic Institute (WPI) has made an unexpected discovery.

They found that yeast produce a hormone previously known to be made by plants, and that the presence of that hormone in sufficient quantity within the yeast's immediate environment triggers the fungal cells to become more infectious.

The WPI research team led by Reeta Prusty Rao, PhD, assistant professor of biology and biotechnology, working in collaboration with Jennifer Normanly, PhD, associate professor of biochemistry and molecular biology at the University of Massachusetts in Amherst, reported their findings in the paper "Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of dimorphic pathogenic fungi" published in the May 2010 issue of the journal Genetics. The paper was featured in the "highlights" section of the journal, where the editors called it a "surprising finding."

"This is a well-known plant hormone. In fact, it was first described in plants by Charles Darwin in 1880," Prusty Rao said. "So we were surprised to see it made in yeast, and to see its impact on virulence traits of fungi that cause disease in people."

Commonly called baker's yeast or brewer's yeast, the fungus Saccharomyces cerevisiae (S. cerevisiae) does not cause human disease. It is, however, a model system for studying other fungi like Candida albicans (C. albicans) that do cause diseases like thrush and vaginal yeast infections, which affect millions of people each year and are not easily cleared by the handful of anti-fungal drugs currently available. While most fungal infections do not cause serious harm, if one spreads to the bloodstream it can be deadly. Hospitalized patients with catheters or central intravenous lines are at risk, as the fungi can grow on those devices and enter the body. Because of the lack of an effective treatment, the mortality rate for some systemic fungal infections is nearly 45 percent. Prusty Rao's lab explores the basic biology of yeast to better understand the processes of fungal infections and to identify potential targets for new drug development.

Before fungi begin to infect a host, they first undergo a dramatic physical change and grow filaments that look like twigs on a leafless tree. The hormone indole-3-acetic acid (IAA) regulates how plants grow, causing them to extend shoots towards sunlight. Previous work by Prusty Rao and others has shown that yeast take-up IAA from the environment to stimulate the growth of filaments. In the current study, Prusty Rao's team found that yeast also produce IAA themselves and secrete it into the environment around them. In this manner, the ongoing secretion and uptake of IAA presumably becomes a feedback loop giving the yeast information about the number of yeast nearby. If there are many yeast secreting IAA, then there is more in the environment to take up.

Furthermore, Prusty Rao's team found that when the concentration of IAA reached a certain threshold, the fungus began to change shape and grow filaments (see figure), providing "strong support" for a connection between the yeasts' production of IAA and fungal infection.

"If there is just one yeast cell sitting under your toe nail, then it won't be a problem—but if there are a thousand yeast cells there, then they can begin to filament and cause infection," Prusty Rao noted. "We believe the data show that IAA plays a role in the yeast's ability to know when there are sufficient numbers of them in close enough proximity to try and infect a host, be it a plant or a person."

About Worcester Polytechnic Institute

Founded in 1865 in Worcester, Mass., WPI was one of the nation's first engineering and technology universities. WPI's14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, management, the social sciences, and the humanities and arts, leading to bachelor's, master's and PhD degrees. WPI's world-class faculty work with students in a number of cutting-edge research areas, leading to breakthroughs and innovations in such fields as biotechnology, fuel cells, information security, materials processing, and nanotechnology. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Perspective Program. There are more than 20 WPI project centers throughout North America and Central America, Africa, Australia, Asia, and Europe.

Michael Cohen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>