Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a Mechanism that Controls the Expression of a Protein Involved in Numerous Cancers

21.10.2010
Researchers at the Institute for Research in Immunology and Cancer (IRIC) of the Université de Montréal have identified a new mechanism controlling the transmission of an abnormal signal at the origin of several cancers.

In an article published in the journal Cell, Marc Therrien's team explains the recent discovery of a protein complex that controls the RAS/MAPK signalling pathway, responsible for some of the deadliest cancers, including pancreatic, colon and lung cancers, and melanomas.

This regulating mechanism could prove to be a promising therapeutic target for the treatment of these diseases. The study conducted on the drosophila model organism is to be verified in humans in a forthcoming step.

Marc Therrien and his team focus their research on the RAS/MAPK signalling pathway, which is deregulated in several tumours. To send a message to the cell, the information must be relayed by proteins contained in this signalling pathway. In the case of the RAS/MAPK pathway, the message is given by RAS and the last protein in the pathway, MAPK, transmits the message to the cell's control centre, the nucleus. However, the RAS/MAPK pathway sometimes transmits erroneous messages which cause the cell to proliferate non-stop.

“Our study shows that a protein complex, EJC, controls production of the MAPK protein, which acts directly on the cell. When this complex is deficient, the signalling pathway is inhibited which restricts the chaotic proliferation of the cell at the origin of many cancers,” Marc Therrien explains. “If we target EJC and the factors that regulate its activity, we could potentially prevent the transmission of abnormal signals that trigger several cancers.”

In addition to serving as a promising therapeutic target for treating cancer, the regulating mechanism discovered for MAPK could also apply to several other genes. “Our research could serve to explain the production of other proteins with a behaviour similar to MAPK. This mechanism could help us to understand gene expression in general,” Marc Therrien concludes.

The breakthrough was made possible by the SOLiD™ Next Generation Sequencing System manufactured by Life Technologies, which enabled the researchers to view the overall consequences of the elimination of EJC on the expression of all of the cell's genes. “IRIC has adopted a cutting-edge technological infrastructure, without which this kind of work would be impossible,” explains Dr. Guy Sauvageau, Chief Executive Officer and Scientific Director of the IRIC. “The Life Technologies sequencing equipment allows us to perform cutting-edge research by quickly obtaining accurate and complete results.”

About IRIC | Institute for Research in Immunology and Cancer
Founded in 2002, IRIC brings together a team of internationally recognized investigators whose mission is to unravel the mysteries of cancer and to provide unparalleled training to the next generation of health research scientists. IRIC engages in bold initiatives with elite partners across North America and abroad that span from basic science and translational research to clinical applications, with the ultimate goal of providing lifelong cures to cancer. For more information about IRIC, please visit www.iric.ca.
Paper cited
Ashton-Beaucage D, Udell CM, Lavoie H, Baril C, Lefrançois M, Chagnon P, Gendron P, Caron-Lizotte O, Bonneil E, Thibault P, Therrien M. (2010) The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143 :251-262
Media contact
Carolyne Lord
Media Relations Officer
Institute for Research in Immunology and Cancer
Université de Montréal
Telephone: 514-343-7282
Email: carolyne.lord@umontreal.ca

Carolyne Lord | EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: Cancer Expression Forum Life Science IRIC Immunology Life Technologies MAPK Protein RAS/MAPK cell death

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>