Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a Mechanism that Controls the Expression of a Protein Involved in Numerous Cancers

21.10.2010
Researchers at the Institute for Research in Immunology and Cancer (IRIC) of the Université de Montréal have identified a new mechanism controlling the transmission of an abnormal signal at the origin of several cancers.

In an article published in the journal Cell, Marc Therrien's team explains the recent discovery of a protein complex that controls the RAS/MAPK signalling pathway, responsible for some of the deadliest cancers, including pancreatic, colon and lung cancers, and melanomas.

This regulating mechanism could prove to be a promising therapeutic target for the treatment of these diseases. The study conducted on the drosophila model organism is to be verified in humans in a forthcoming step.

Marc Therrien and his team focus their research on the RAS/MAPK signalling pathway, which is deregulated in several tumours. To send a message to the cell, the information must be relayed by proteins contained in this signalling pathway. In the case of the RAS/MAPK pathway, the message is given by RAS and the last protein in the pathway, MAPK, transmits the message to the cell's control centre, the nucleus. However, the RAS/MAPK pathway sometimes transmits erroneous messages which cause the cell to proliferate non-stop.

“Our study shows that a protein complex, EJC, controls production of the MAPK protein, which acts directly on the cell. When this complex is deficient, the signalling pathway is inhibited which restricts the chaotic proliferation of the cell at the origin of many cancers,” Marc Therrien explains. “If we target EJC and the factors that regulate its activity, we could potentially prevent the transmission of abnormal signals that trigger several cancers.”

In addition to serving as a promising therapeutic target for treating cancer, the regulating mechanism discovered for MAPK could also apply to several other genes. “Our research could serve to explain the production of other proteins with a behaviour similar to MAPK. This mechanism could help us to understand gene expression in general,” Marc Therrien concludes.

The breakthrough was made possible by the SOLiD™ Next Generation Sequencing System manufactured by Life Technologies, which enabled the researchers to view the overall consequences of the elimination of EJC on the expression of all of the cell's genes. “IRIC has adopted a cutting-edge technological infrastructure, without which this kind of work would be impossible,” explains Dr. Guy Sauvageau, Chief Executive Officer and Scientific Director of the IRIC. “The Life Technologies sequencing equipment allows us to perform cutting-edge research by quickly obtaining accurate and complete results.”

About IRIC | Institute for Research in Immunology and Cancer
Founded in 2002, IRIC brings together a team of internationally recognized investigators whose mission is to unravel the mysteries of cancer and to provide unparalleled training to the next generation of health research scientists. IRIC engages in bold initiatives with elite partners across North America and abroad that span from basic science and translational research to clinical applications, with the ultimate goal of providing lifelong cures to cancer. For more information about IRIC, please visit www.iric.ca.
Paper cited
Ashton-Beaucage D, Udell CM, Lavoie H, Baril C, Lefrançois M, Chagnon P, Gendron P, Caron-Lizotte O, Bonneil E, Thibault P, Therrien M. (2010) The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143 :251-262
Media contact
Carolyne Lord
Media Relations Officer
Institute for Research in Immunology and Cancer
Université de Montréal
Telephone: 514-343-7282
Email: carolyne.lord@umontreal.ca

Carolyne Lord | EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: Cancer Expression Forum Life Science IRIC Immunology Life Technologies MAPK Protein RAS/MAPK cell death

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>