Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disappearance of genetic material allows tumor cells to grow

05.08.2011
Loss of a gene regulator is crucial for a rare type of skin cancer

Malignant Sézary syndrome is characterized by the reproduction of a special type of white blood cells in the skin of male and female patients. In contrast to most other skin lymphomas, patients with Sézary syndrome manifest not only skin contamination but also contamination of blood and lymph nodes by degenerate T cells even at the onset of the disease.

The researchers investigated highly purified tumor cells from patients with Sézary syndrome using modern, high-resolution genetic procedures (the so-called array comparative genomic hybridization technique) for hitherto unknown genetic changes. In doing so they identified areas in the genotype of these tumor cells that have become lost in many of the patients examined. A detailed analysis of these areas showed that one of the most frequently affected genes codes for a so-called transcription factor. Transcription factors have key functions in the regulation of cellular gene activity.

"The partial loss of the gene for transcription factor E2A appears to play an essential role in this context because the gene is normally of great importance for natural lymphocyte development," explains explained Chalid Assaf from the Charité Klinik für Dermatologie, Venerologie und Allergologie. In mice a loss of this gene leads to the genesis of aggressive T cell lymphomas. However, a gene loss in one of the various human lymphoma classes had so far remained elusive.

The researchers also identified several E2A-regulated genes and signal paths in tumor cells, the mere deregulation of each of which is sufficient to enable a tumor to develop. "Loss of E2A in Sézary syndrome is of crucial importance for the aggressive behavior of tumor cells because it contributes to more rapid, uncontrolled growth of cells," emphasized Stephan Mathas, a scientist at the Charité Klinik für Hämatologie und Onkologie and at MDC. Consequently, it was directly proven for the first time that E2A in humans has the function of a tumor suppressor.

The researchers hope that these findings will lead to the development of new, more effective treatment concepts for patients with Sézary syndrome.

* Genomic loss of the putative tumor suppressor gene E2A in human lymphoma Anne Steininger,1 Markus Möbs,2 Reinhard Ullmann,1 Karl Köchert,4 Stephan Kreher,4 Björn Lamprecht,4 Ioannis Anagnostopoulos,3 Michael Hummel,3 Julia Richter,5 Marc Beyer,2 Martin Janz,4 Claus-Detlev Klemke,6 Harald Stein,3 Bernd Dörken,4 Wolfram Sterry,2 Evelin Schrock,7 Stephan Mathas,4 and Chalid Assaf2,8 1Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany, 2Department of Dermatology and Allergy, Skin Cancer Center Charité, 3Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany, 4Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany, 5Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany, 6Department of Dermatology, University Medical Center Mannheim, Ruprecht-Karls-University of Heidelberg, 68167 Mannheim, Germany, 7Institute for Clinical Genetics, Dresden University of Technology, 01307 Dresden, Germany, 8HELIOS Klinikum Krefeld, 47805 Krefeld, Germany

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/
Dr. rer. nat. Julia Biederlack
Referentin für Wissenschaftskommunikation
Charité – Universitätsmedizin Berlin
GB Unternehmenskommunikation
Charitéplatz 1
10117 Berlin
Tel.: +49 (0) 30 450 570 585
Fax: +49 (0) 30 450 570 940
e-mail: julia.biederlack@charite.de
http://www.charite.de/

Barbara Bachtler | EurekAlert!
Further information:
http://www.mdc-berlin.de

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>