Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes may clamp down on brain cholesterol

01.12.2010
Joslin research could help to explain changes in brain function among people with diabetes—including greater risk of Alzheimer's disease

The brain contains more cholesterol than any other organ in the body, has to produce its own cholesterol and won't function normally if it doesn't churn out enough. Defects in cholesterol metabolism have been linked with Alzheimer's disease and other neurodegenerative conditions. Now researchers at Joslin Diabetes Center have discovered that diabetes can affect how much cholesterol the brain can make.

Scientists in the laboratory of C. Ronald Kahn, M.D., head of Joslin's Integrative Physiology and Metabolism research section, found that brain cholesterol synthesis, the only source of cholesterol for the brain, drops in several mouse models of diabetes. Their work was reported online in the journal Cell Metabolism on November 30.

"Since cholesterol is required by neurons to form synapses (connections) with other cells, this decrease in cholesterol could affect how nerves function for appetite regulation, behavior, memory and even pain and motor activity," says Dr. Kahn, who is also Mary K. Iacocca Professor of Medicine at Harvard Medical School. "Thus, this has broad implications for people with diabetes." Other investigations have gathered strong evidence that people with diabetes may display varying types of alterations in brain function or ways of responding to stress, he points out.

"It is well known that insulin and diabetes play an important role in regulating cholesterol synthesis in the liver, where most of the cholesterol circulating in blood comes from," Dr. Kahn adds. "But nobody had ever suspected that insulin and diabetes would play an important role in cholesterol synthesis in the brain."

In addition to its potential role in Alzheimer's disease and other forms of neurological dysfunction, the newly discovered mechanism may play a role in diabetic neuropathy, which remains a large challenge for therapy.

People with diabetes are also known to be more prone to depression, memory loss and eating disorders than people without diabetes, and imaging studies have shown that people with diabetes have altered brain function compared to those without.

Additionally, the finding raises a question about potential interactions between anti-cholesterol drugs and diabetes.

In the Joslin study, scientists first examined gene expression in the hypothalamus of a mouse model of insulin-deficient (type 1) diabetes. They found decreased expression for almost all of the genes of cholesterol synthesis, including a gene called SREBP-2, which acts as a master regulator for cholesterol production. Similar findings were present in the cerebral cortex and other regions of the brain in these animals and also found in several other mouse models of diabetes. In the insulin-deficient animals, this phenomenon was associated with decreased cholesterol synthesis. Treatment of the mice with insulin, either by normal injection or injection into the fluid surrounding the brain, reversed the process.

"Our studies showed that these effects occurred in both the neurons and supporting 'glial' cells that help provide some nutrients to the neurons," says Kahn. "Ultimately this affects the amount of cholesterol that can get into the membranes of the neuron, which form the synapses and the synaptic vesicles—the small structures that contain neurotransmitters."

Additionally, the Joslin work showed a connection between the decrease in brain cholesterol synthesis and appetite. When the scientists took normal mice and temporarily reduced cholesterol creation in the hypothalamus with a technique known as RNA interference, the animals started eating more and gained significant weight. Previous studies by other labs have demonstrated that diabetes may affect brain hormones involved in appetite regulation.

Ryo Suzuki, Ph.D., a postdoctoral researcher in the Kahn lab, is first author on the paper. Other Joslin contributors include Kevin Lee and Enxuan Jing. Other co-authors include Sudha B. Biddinger of Children's Hospital Boston, Jeffrey G. McDonald of the University of Texas Southwestern Medical Center, and Thomas J. Montine and Suzanne Craft of the University of Washington in Seattle. The work was supported by the National Institutes for Health, the Iacocca Foundation and the Manpei Suzuki Diabetes Foundation.

About Joslin Diabetes Center

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Founded in 1898 by Elliott P. Joslin, M.D., Joslin is an independent, nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit www.joslin.org. Keep up with Joslin research and clinical news at Inside Joslin at www.joslin.org/news/inside_joslin.html, friend Joslin on Facebook at www.facebook.com/joslindiabetes and follow on Twitter at www.twitter.com/JoslinDiabetes.

Eric Bender | EurekAlert!
Further information:
http://www.joslin.harvard.edu

Further reports about: Alzheimer Diabetes Medical Wellness brain function metabolism mouse model

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>