Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes may clamp down on brain cholesterol

01.12.2010
Joslin research could help to explain changes in brain function among people with diabetes—including greater risk of Alzheimer's disease

The brain contains more cholesterol than any other organ in the body, has to produce its own cholesterol and won't function normally if it doesn't churn out enough. Defects in cholesterol metabolism have been linked with Alzheimer's disease and other neurodegenerative conditions. Now researchers at Joslin Diabetes Center have discovered that diabetes can affect how much cholesterol the brain can make.

Scientists in the laboratory of C. Ronald Kahn, M.D., head of Joslin's Integrative Physiology and Metabolism research section, found that brain cholesterol synthesis, the only source of cholesterol for the brain, drops in several mouse models of diabetes. Their work was reported online in the journal Cell Metabolism on November 30.

"Since cholesterol is required by neurons to form synapses (connections) with other cells, this decrease in cholesterol could affect how nerves function for appetite regulation, behavior, memory and even pain and motor activity," says Dr. Kahn, who is also Mary K. Iacocca Professor of Medicine at Harvard Medical School. "Thus, this has broad implications for people with diabetes." Other investigations have gathered strong evidence that people with diabetes may display varying types of alterations in brain function or ways of responding to stress, he points out.

"It is well known that insulin and diabetes play an important role in regulating cholesterol synthesis in the liver, where most of the cholesterol circulating in blood comes from," Dr. Kahn adds. "But nobody had ever suspected that insulin and diabetes would play an important role in cholesterol synthesis in the brain."

In addition to its potential role in Alzheimer's disease and other forms of neurological dysfunction, the newly discovered mechanism may play a role in diabetic neuropathy, which remains a large challenge for therapy.

People with diabetes are also known to be more prone to depression, memory loss and eating disorders than people without diabetes, and imaging studies have shown that people with diabetes have altered brain function compared to those without.

Additionally, the finding raises a question about potential interactions between anti-cholesterol drugs and diabetes.

In the Joslin study, scientists first examined gene expression in the hypothalamus of a mouse model of insulin-deficient (type 1) diabetes. They found decreased expression for almost all of the genes of cholesterol synthesis, including a gene called SREBP-2, which acts as a master regulator for cholesterol production. Similar findings were present in the cerebral cortex and other regions of the brain in these animals and also found in several other mouse models of diabetes. In the insulin-deficient animals, this phenomenon was associated with decreased cholesterol synthesis. Treatment of the mice with insulin, either by normal injection or injection into the fluid surrounding the brain, reversed the process.

"Our studies showed that these effects occurred in both the neurons and supporting 'glial' cells that help provide some nutrients to the neurons," says Kahn. "Ultimately this affects the amount of cholesterol that can get into the membranes of the neuron, which form the synapses and the synaptic vesicles—the small structures that contain neurotransmitters."

Additionally, the Joslin work showed a connection between the decrease in brain cholesterol synthesis and appetite. When the scientists took normal mice and temporarily reduced cholesterol creation in the hypothalamus with a technique known as RNA interference, the animals started eating more and gained significant weight. Previous studies by other labs have demonstrated that diabetes may affect brain hormones involved in appetite regulation.

Ryo Suzuki, Ph.D., a postdoctoral researcher in the Kahn lab, is first author on the paper. Other Joslin contributors include Kevin Lee and Enxuan Jing. Other co-authors include Sudha B. Biddinger of Children's Hospital Boston, Jeffrey G. McDonald of the University of Texas Southwestern Medical Center, and Thomas J. Montine and Suzanne Craft of the University of Washington in Seattle. The work was supported by the National Institutes for Health, the Iacocca Foundation and the Manpei Suzuki Diabetes Foundation.

About Joslin Diabetes Center

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Founded in 1898 by Elliott P. Joslin, M.D., Joslin is an independent, nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit www.joslin.org. Keep up with Joslin research and clinical news at Inside Joslin at www.joslin.org/news/inside_joslin.html, friend Joslin on Facebook at www.facebook.com/joslindiabetes and follow on Twitter at www.twitter.com/JoslinDiabetes.

Eric Bender | EurekAlert!
Further information:
http://www.joslin.harvard.edu

Further reports about: Alzheimer Diabetes Medical Wellness brain function metabolism mouse model

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>