Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes may clamp down on brain cholesterol

01.12.2010
Joslin research could help to explain changes in brain function among people with diabetes—including greater risk of Alzheimer's disease

The brain contains more cholesterol than any other organ in the body, has to produce its own cholesterol and won't function normally if it doesn't churn out enough. Defects in cholesterol metabolism have been linked with Alzheimer's disease and other neurodegenerative conditions. Now researchers at Joslin Diabetes Center have discovered that diabetes can affect how much cholesterol the brain can make.

Scientists in the laboratory of C. Ronald Kahn, M.D., head of Joslin's Integrative Physiology and Metabolism research section, found that brain cholesterol synthesis, the only source of cholesterol for the brain, drops in several mouse models of diabetes. Their work was reported online in the journal Cell Metabolism on November 30.

"Since cholesterol is required by neurons to form synapses (connections) with other cells, this decrease in cholesterol could affect how nerves function for appetite regulation, behavior, memory and even pain and motor activity," says Dr. Kahn, who is also Mary K. Iacocca Professor of Medicine at Harvard Medical School. "Thus, this has broad implications for people with diabetes." Other investigations have gathered strong evidence that people with diabetes may display varying types of alterations in brain function or ways of responding to stress, he points out.

"It is well known that insulin and diabetes play an important role in regulating cholesterol synthesis in the liver, where most of the cholesterol circulating in blood comes from," Dr. Kahn adds. "But nobody had ever suspected that insulin and diabetes would play an important role in cholesterol synthesis in the brain."

In addition to its potential role in Alzheimer's disease and other forms of neurological dysfunction, the newly discovered mechanism may play a role in diabetic neuropathy, which remains a large challenge for therapy.

People with diabetes are also known to be more prone to depression, memory loss and eating disorders than people without diabetes, and imaging studies have shown that people with diabetes have altered brain function compared to those without.

Additionally, the finding raises a question about potential interactions between anti-cholesterol drugs and diabetes.

In the Joslin study, scientists first examined gene expression in the hypothalamus of a mouse model of insulin-deficient (type 1) diabetes. They found decreased expression for almost all of the genes of cholesterol synthesis, including a gene called SREBP-2, which acts as a master regulator for cholesterol production. Similar findings were present in the cerebral cortex and other regions of the brain in these animals and also found in several other mouse models of diabetes. In the insulin-deficient animals, this phenomenon was associated with decreased cholesterol synthesis. Treatment of the mice with insulin, either by normal injection or injection into the fluid surrounding the brain, reversed the process.

"Our studies showed that these effects occurred in both the neurons and supporting 'glial' cells that help provide some nutrients to the neurons," says Kahn. "Ultimately this affects the amount of cholesterol that can get into the membranes of the neuron, which form the synapses and the synaptic vesicles—the small structures that contain neurotransmitters."

Additionally, the Joslin work showed a connection between the decrease in brain cholesterol synthesis and appetite. When the scientists took normal mice and temporarily reduced cholesterol creation in the hypothalamus with a technique known as RNA interference, the animals started eating more and gained significant weight. Previous studies by other labs have demonstrated that diabetes may affect brain hormones involved in appetite regulation.

Ryo Suzuki, Ph.D., a postdoctoral researcher in the Kahn lab, is first author on the paper. Other Joslin contributors include Kevin Lee and Enxuan Jing. Other co-authors include Sudha B. Biddinger of Children's Hospital Boston, Jeffrey G. McDonald of the University of Texas Southwestern Medical Center, and Thomas J. Montine and Suzanne Craft of the University of Washington in Seattle. The work was supported by the National Institutes for Health, the Iacocca Foundation and the Manpei Suzuki Diabetes Foundation.

About Joslin Diabetes Center

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Founded in 1898 by Elliott P. Joslin, M.D., Joslin is an independent, nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit www.joslin.org. Keep up with Joslin research and clinical news at Inside Joslin at www.joslin.org/news/inside_joslin.html, friend Joslin on Facebook at www.facebook.com/joslindiabetes and follow on Twitter at www.twitter.com/JoslinDiabetes.

Eric Bender | EurekAlert!
Further information:
http://www.joslin.harvard.edu

Further reports about: Alzheimer Diabetes Medical Wellness brain function metabolism mouse model

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>