Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dendritic cells in liver protect against acetaminophen toxicity

02.09.2011
Researchers identify possible new therapeutic target for acetaminophen induced acute liver failure

NYU School of Medicine researchers have discovered that dendritic cells in the liver have a protective role against the toxicity of acetaminophen, the widely used over-the-counter pain reliever and fever reducer for adults and children. The study's findings are published in the September issue of the journal Hepatology.

The liver is the organ that plays a central role in transforming and filtering chemicals from the body. High-doses of acetaminophen can cause hepatotoxicity, chemical driven liver damage. In fact, accidental and intentional acetaminophen overdose are the most frequent causes of acute liver failure (ALF) in the United States. Acetaminophen related liver failure by intentional or accidental overdose causes 56,000 emergency room visits, 2,600 hospital visits and 450 deaths annually. As a result, this year the FDA mandated drug manufacturers to start limiting the amount of acetaminophen in combination drug products and is currently exploring adding safer dosing instructions to children's acetaminophen products.

In the new study, researchers found an abundance of dendritic cells in the liver can protect the organ from acetaminophen damage while low levels of dendritic cells in the liver are associated with exacerbated liver damage, liver cell and tissue death, known as centrilobular hepatic necrosis, and acute liver failure from acetaminophen.

"Our research results confirm a central role for dendritic cells and their powerful regulation of acetaminophen's toxicity," said George Miller, MD, senior author of study and assistant professor, Departments of Surgery and Cell Biology at NYU Langone Medical Center. "High levels of dendritic cells have a novel, critical and innate protective role in acetaminophen hepatotoxicity. We now have greater insight into the liver's tolerance of acetaminophen toxicity and dendritic cell regulation of these toxins."

In the study, researchers used acetaminophen-induced hepatic injured mice models to closely examine the protective role of dendritic cells. Dendritic cells are the main antigens in the liver that trigger an immune response and control the liver's tolerance to high doses of invading toxins like acetaminophen. In the experiment all mice were injected with acetaminophen but some mice models were first depleted of dendritic liver cells using a diphtheria toxin while others had their dendritic cell levels bolstered with Flt3L, a protein in the blood previously shown to increase proliferation of dendritic cell levels.

Researchers discovered dendritic cell depletion exacerbates acetaminophen's damage to the liver. The acetaminophen treated mice with depleted dendritic cells had more extensive liver cell and tissue death compared to other mice. Also, these mice died within 48 hours of acetaminophen challenge- whereas death was rare in other mice without dendritic cell depletion. In addition, the study shows dendritic cell expansion successfully diminished the hepatotoxic effects of acetaminophen protecting the liver from damage.

"Understanding the regulatory role of dendritic cells is an important step in the development of immune-therapy for acetaminophen induced liver injury," said Dr. Miller, a member of the NYU Cancer Institute. "Advanced studies are warranted to investigate further the protective role of dendritic cells in humans and their use as a possible new therapeutic target for liver failure prevention in the future."

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Biomarkers for identifying Tumor Aggressiveness
26.07.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>