Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering how CD4 T cells die during HIV infection

25.11.2010
Gladstone investigators solve long-standing HIV mystery

Scientists at Gladstone Institute of Virology and Immunology have solved a long-standing mystery about HIV infection–namely how HIV promotes the death of CD4 T cells.

It is the loss of this critical subset of immune cells that leads to the development of AIDS. Most immune cells that die during HIV infection are seemingly not infected, a phenomenon formerly described as "bystander cell killing." Now the Gladstone scientists report that these "bystander" cells are actually the victims of a failed or abortive form of viral infection. Their findings are published in today's issue of the journal Cell.

Dr. Gilad Doitsh, who performed many of the studies and is the lead author of the paper stated, "Our study reveals that the virus actually enters the CD4 T cells that are destined to die and that the virus starts to make a DNA copy of its RNA, a process called reverse transcription. However, this process does not work well in the majority of these cells and the incomplete DNA intermediates that accumulate in the cytoplasm are sensed and trigger the cells to 'commit suicide' in an attempt to protect the body."

The researchers identified the precise step in which the CD4 T cells die by using different anti-HIV drugs to arrest the virus at different points in its life cycle. Drugs that blocked viral entry or that blocked the start of reverse transcription stopped the killing. Conversely, drugs that acted later in the life cycle did not. Importantly, the researchers used primary human lymphoid tissues, such as tonsil and spleen to uncover this death pathway. These and other lymphoid tissues contain over 98% of the body's CD4 T cells and represent the major site where the virus reproduces itself.

The team also found that the dying cells do not go silently into the night. As they die, these cells release proteins, called cytokines, that cause inflammation and that attract healthy cellular targets promoting repeated rounds of infection and cell death. Scientists have long been interested in why HIV infection and inflammation seem to go hand in hand. This study reveals a new mechanism linking the virus to inflammation.

"Our findings have revealed a completely unexpected mechanism for CD4 T-cell death during HIV infection" said Warner C. Greene, institute director and senior author of the paper. "These results highlight how a natural cellular defense normally used by the host to repel foreign invaders goes awry in HIV infection, resulting in a profound depletion of CD4 T cells. If untreated, this process ultimately causes AIDS."

Of note, this finding comes only one week before the 15th Annual World AIDS day. Since the initial detection of AIDS 29 years ago, more than 60 million people have been infected worldwide and 25 million people have died of AIDS or AIDS-related diseases. Every year, over 2.5 million people are newly infected with most of these infections occurring in developing countries.

Other authors of the study include Gladstone scientists Marielle Cavrois, Kara G. Lassen, Orlando Zepeda, Zhiyuan Yang, Mario L. Santiago, and Andrew M. Hebbeler.

This work was supported by funds from the Gladstone Institutes and the US National Institutes of Health. Additional support was provided to Dr. Doitsh by the California HIV Research Program.

Warner Greene's primary affiliation is with the Gladstone Institute of Virology and Immunology, where he is director and the Nick and Sue Hellman Distinguished Professor of Translational Medicine and where his laboratory is located and his research is conducted. He is also a professor of medicine, microbiology and immunology at UCSF.

Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology, and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Gary Howard | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>