Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers identify an important gene for a healthy, nutritious plant

01.08.2008
Dartmouth biologists have found a gene required for both efficient photosynthesis and for iron metabolism, processes necessary for producing a healthy plant and a nutritious food source. This research is part of a larger effort to learn how plants take up essential nutrients from the environment as they grow.

Lead researcher Mary Lou Guerinot, Professor of Biological Sciences, with co-author graduate student Jeeyon Jeong (photo by Joseph Mehling '69)

The research paper, published with colleagues from Colorado State University and the University of South Carolina, appeared in the early online edition of the Proceedings of the National Academy of Science during the week of July 21.

"There's a lot of attention today on global food shortages," says Mary Lou Guerinot, the principal investigator on the study and one of the authors of the paper. "We've found a gene that is key for proper chloroplast function. This finding might some day help scientists develop plants that grow better and can serve as more nutritious food."

... more about:
»Chloroplast »Guerinot »nutritious

During photosynthesis, chloroplasts are the subcellular compartment used by plant cells to convert light energy to sugars, fueling the plant. This process in the chloroplasts requires iron, and up to 90 percent of the iron in leaf cells is located in chloroplasts. In this study, Guerinot and her colleagues provide molecular evidence that FRO7, a gene in the FRO family, is involved in chloroplast iron acquisition and is required for efficient photosynthesis. The FRO family is a group of proteins that transfers electrons from ferric iron (Fe3+) to reduce it to another kind of iron (Fe2+). This same lab showed that this process (reduction of iron) was essential for plants to take up iron into the roots from the soil in a study published in 1999 in Nature.

"We have now shown that an analogous process is required for proper chloroplast function," says Guerinot. "Moreover, without FRO7, plants sown in iron deficient soil died as young seedlings. Our findings are of particular interest because how iron gets into chloroplasts has not been well understood despite the significance of iron in chloroplasts."

Guerinot explains that one-third of the soil worldwide is iron deficient, so it is important to understand how plants acquire iron, allocate iron to different parts of the plant and within the cell, and survive under iron limiting conditions. This is not only critical to improve plant growth and crop yields but also to improve human nutrition. According to the World Health Organization, iron deficiency is the most prevalent nutritional disorder in the world today and most people get their iron from eating plants.

"Enriching crops with mineral and vitamin nutrients will provide sustainable solutions to malnutrition," she says.

The work was funded by the National Science Foundation. The title of the paper is, "Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions." Co-authors on this paper include Dartmouth graduate student Jeeyon Jeong, with Erin Connolly and Loubna Kerkeb at the University of South Carolina, and Marinus Pilon and Chris Cohu at Colorado State University.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

Further reports about: Chloroplast Guerinot nutritious

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>