Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copycat protein finds a perfect match

22.11.2010
Evolution has left a protein and nucleic acid molecule with remarkably similar structures, allowing them to undergo modification by closely related enzymes

As proteins are synthesized during messenger RNA translation, fresh amino acids are delivered to the ribosome of the cell by nucleic acid molecules known as transfer RNAs (tRNAs). Each amino acid has a cognate tRNA, and the two are joined by specialized enzymes known as aminoacyl-tRNA synthetases (aaRS).

Scientists have also identified a number of bacterial aaRS paralogs, counterparts that resemble these enzymes but lack key functional domains. The role of these proteins is mostly a mystery, but a team led by Shigeyuki Yokoyama at the RIKEN Systems and Structural Biology Center in Yokohama has now revealed an unexpected function for the Escherichia coli aaRS paralog GenX1.

“I thought that elucidation of the structure and function of aaRS paralogs would lead to an understanding of not only mechanisms of genetic code translation but also the evolution of living organisms,” explains Yokoyama. In fact, GenX is closely related to the aaRS that transfers the amino acid lysine; although it can no longer bind lysine’s tRNA, it still associates strongly with lysine, and on the whole these two proteins are highly similar in structure.

This similarity suggested to the team that GenX transfers lysine to a different molecular target, subsequently identified as elongation factor P (EF-P): a translation-associated protein whose structure closely resembles the distinctive L-shape of tRNA molecules. “This is the first discovery of such striking similarities in structure and function between a nucleic acid and a protein, although they are completely different molecules,” says Yokoyama. He proposes that these two molecules may have come to resemble each other by a process of ‘convergent evolution’, which favored the ability to productively interact with such closely related enzymes (Fig. 1).

Although it is extremely common for one protein to modulate the activity of another by attaching one of a selection of chemical groups, this represents the first known example of a protein being modified by the enzymatic addition of an entire amino acid. Nevertheless, the researchers demonstrated that this activity plays a vital role in protein production by E. coli cells, and is therefore essential to their survival.

Yokoyama now hopes to more closely explore the details of this process, but he also sees the potential for short-term applications as well. “GenX exists only in bacterial species, such as E. coli and Salmonella, and not in eukaryotic organisms, such as humans,” he says. “Therefore, GenX is a promising target for developing new antimicrobial agents for pathogenic bacteria … without adverse side effects.”

The corresponding author for this highlight is based at the RIKEN Systems and Structural Biology Center

1. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. & Yokoyama, S. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nature Structural & Molecular Biology 17, 1136–1143 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>