New real-time Hsp90 high throughput screening method using fluorescence resonance energy transfer (FRET)

The molecular chaperone heat shock protein 90 (Hsp90) couples ATP hydrolysis

to conformational changes driving a reaction cycle that is required for substrate activation. Recent structural analysis provided snapshots of the open and closed states of Hsp90, which mark the starting and end points of these changes. To directly track structural rearrangements in Hsp90, fluorophores were attached to engineered cysteine residues in the N or M domains of Hsp90. The chosen amino acid positions are surface-exposed and not directly involved in Hsp90 function. In addition, a double-cysteine variant was created (Figure). The structural changes in Hsp90 can be tightly regulated by co-chaperones that are completely inhibited by Sti1 or accelerated by Aha1. Aha1 induces Hsp90 rearrangements that speed up the conformational cycle even in the absence of nucleotide. The comprehensive analysis of the Hsp90 cycle defines a controlled progression through distinct intermediates that can be modulated by conformation-sensitive co-chaperones. This new assay system allows high-sensitivity real-time detection and kinetic analysis of motions of Hsp90 in response to nucleotides or co-chaperones by fluorescence resonance energy transfer (FRET).

Further Information: PDF

Bayerische Patentallianz GmbH
Phone: +49 89 5480177-0

Contact
Peer Biskup

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors