Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Does cooperation require both reciprocity and alike neighbours?

Max Planck scientists develop new theoretical model on the evolution of cooperation

Evolution by definition is cold and merciless: it selects for success and weeds out failure. It seems only natural to expect that such a process would simply favour genes that help themselves and not others.

Yet cooperative behaviour can be observed in many areas, and humans helping each other are a common phenomenon. Thus, one of the major questions in science today is how cooperative behaviour could evolve. Scientists from the Max Planck Institute of Evolutionary Biology in Plön, Harvard University, and the University of Amsterdam have now developed a new model combining two possible explanations - direct reciprocity and population structure - and found that both repetition and structured population are essential for the evolution of cooperation. The researchers conclude that human societies can best achieve high levels of cooperative behaviour if their individuals interact repeatedly, and if populations exhibit at least a minor degree of structure.

The scientists addressed the question how cooperative behaviour could evolve using a game called the prisoner’s dilemma, which considers two types of players: co-operators who pay a cost to help others; and defectors who avoid paying the cost, while reaping benefits from the co-operators they interact with. In general, everyone would be better off if they had engaged in cooperation, but from the point of view of the individual, defection is more beneficial. Selection will therefore always favour the defectors, and not cooperation. Researchers have used population structure and direct reciprocity to explain why cooperation has nevertheless evolved. In structured populations, co-operators are more likely to interact with other co-operators and defectors with defectors. Direct reciprocity involves the repetition of interaction and is therefore based on experiences gained from prior events involving cooperation. In the past, both approaches have been regarded separately.

Using computer simulations and mathematical models, a group of scientists around Julian Garcia from the Max-Planck Institute of Evolutionary Biology in Plön have developed a new model that takes both concepts into account. They discovered that direct reciprocity alone is not enough, and that population structure is necessary in order to reach a high level of cooperation. When there is some reciprocity, the average level of cooperation increases because alike types are more likely to interact with each other. Additionally, the researchers observed that cooperation occurs if cooperative and defective individuals are highly clustered and repetition is rare. And surprisingly, too much repetition can even harm cooperation in cases when the population structure makes cooperation between individuals very likely. This is due to the fact that reciprocity can protect defectors from invasion by defectors in a similar manner that it prevents cooperation from being invaded by defectors.

“Without population structure, cooperation based on repetition is unstable”, Garcia explains one of the main findings. This is especially true for humans, where repetition occurs regularly and who live in fluid, but not totally unstructured populations. A pinch of population structure helps a lot if repetition is present. “Therefore, the recipe for human cooperation might be: a bit of structure and a lot of repetition”, says Julian Garcia. This phenomenon results in a high average level of cooperation.


Dr. Julian Garcia
Max Planck Institute for Evolutionary Biology
Phone: +49 4522 763-224
Email: garcia@­
Dr. Kerstin Mehnert
Max Planck Institute for Evolutionary Biology
Phone: +49 4522 763-233
Fax: +49 4522 763-310
Email: mehnert@­

Original publication
Matthijs van Veelena, Julián Garcíac, David G. Randa and Martin A. Nowaka
Direct reciprocity in structured populations
Published online before print June 4, 2012, doi: 10.1073/pnas.1206694109

Dr. Julian Garcia | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>