Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining Strategies Speeds the Work of Enzymes

08.05.2013
NREL research finds synergy in two approaches to breaking down cell walls of biomass
Enzymes could break down cell walls faster – leading to less expensive biofuels for transportation – if two enzyme systems are brought together in an industrial setting, new research by the Energy Department’s National Renewable Energy Laboratory suggests.

A paper on the breakthrough, “Fungal Cellulases and Complexed Cellulosomal Enzymes Exhibit Synergistic Mechanisms in Cellulose Deconstruction,” appears in the current edition of Energy and Environmental Science. Co-authors include five scientists from NREL and one from the Weizmann Institute in Israel.

The Energy Independence and Security Act of 2007 has set a goal of producing 36 billion gallons of biofuel a year in the United States by 2022, including 21 billion gallons coming from advanced biofuel production. One barrier to reaching that goal is the high cost of enzyme treatment, a crucial step in turning the biomass – poplar trees, switchgrass, corn stover, and the like – into liquid fuel.

Enzymes secreted by microorganisms naturally degrade the cell walls of plants, breaking them down so their sugars can be harvested. But plants have their own survival tricks, including mechanisms to make it harder for the enzymes to break down the cell walls. Those defenses boost the cost of producing biofuels, and have pushed researchers to try to find combinations of enzymes that can do the job faster.

NREL researchers found that two enzyme paradigms – free and complexed enzymes – use dramatically different mechanisms to degrade biomass at the nanometer scale. Further, they found that mixing the two systems enhances catalytic performance. The findings suggest that there may be an optimal strategy between the two mechanisms – one that Nature may already have worked out.

When the two enzyme systems are combined, the substrate changes in unexpected ways and that result suggests the two systems work with each other to deconstruct the cell walls more efficiently. Scientists can use this knowledge to engineer optimal enzyme formulations – fast, efficient, single-minded and hungry.

To outmaneuver the plant’s survival mechanisms, many microorganisms secrete synergistic cocktails of individual enzymes, with one or several catalytic domains per enzyme. Conversely, some bacteria synthesize large multi-enzyme complexes, called cellulosomes, which contain multiple catalytic units per complex.

While both systems use similar catalytic chemistries, the ways they degrade polysaccharides has been unclear.

NREL researchers found that the free enzymes are more active on pretreated biomass, while the cellulosomes are more active on purified cellulose. Using electron microscopes they found that free enzymes attack the plant cell wall surface by chipping and eroding, helped along by sharpening the thread-like cellulose fibers.

By contrast, the cellulosomes physically separate individual cellulose microfibrils from larger particles to enhance access to the cellulose surfaces. They assemble protein scaffolding to help get the job done.

NREL researchers observed that when the two enzyme systems are combined, the work improves dramatically, likely due to our combining enzymes that evolved naturally, and independently, to do the same job in different ways.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

Further reports about: NREL cell walls electron microscope enzymes poplar tree strategies

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>