Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Combating food allergies with vaccine viruses

Researchers of the Paul-Ehrlich-Institut have succeeded in preventing food allergy against chicken protein using a modified vaccine virus.

The viruses serve a dual function: They transfer genetic information of the allergen into the target cell of the immune system and they have an inherent immunomodulatory effect. The research results have been published in the online edition of the journal Allergy of 30 July 2013 (DOI 10.1111/all.12192)

Inflammation of intestinal mucosa in allergic mice (on the left; e.g. thickened basal layer) as compared to MVA-OVA-vaccinated mice with unimpaired intestinal mucosa (on the right side).

Food allergies are on the increase in all industrialised countries, affecting around five per cent of all children and four per cent of all adults. Allergen avoidance is currently the only established treatment of choice. Specific immunotherapy using allergen extracts, which is common in the treatment of pollen allergies, has not yet been established for food allergies. Moreover, there is an inherent risk of serious adverse reactions including anaphylactic shock.

Researchers of the Paul-Ehrlich-Institut have therefore taken a completely novel approach towards immunotherapy of food allergy, which is based on modified vaccinia virus Ankara (MVA). MVA is a modified vaccine virus which has been found to be safe in several clinical trials in infection medicine. MVA facilitates transfer of the genetic information of the allergen to antigen presenting cells of the body. Cells infected with the virus begin to produce the allergen and present it to the immune system. Unlike the established immunotherapy of pollen or house dust mite allergy where allergen extracts are applied directly, the new method ascertains that the immune system does not come into contact with the allergen before allergen fragments are presented on the surface of antigen presenting cells. Serious allergic reactions as in the case of direct allergen uptake via food consumption can be ruled out.

Researchers in the Allergology and Virology Divisions at the Paul-Ehrlich-Institut had already been able to show that "vaccination" of mice with MVA carrying the gene for the chicken protein ovalbumin (MVA-OVA) prevented the usually considerable increase in allergy inducing IgE antibodies in response to exposure to the allergen [1].

Which clinical significance do these changes imply? To establish this, Dr Masako Toda, head of the Temporary Research Group "Experimental Allergy Models" at the PEI, and her co-workers developed a model of intestinal food allergy in mice. Sensitisation of mice to ovalbumin led to clinical symptoms such as diarrhoea, loss of bodyweight, and drop of body temperature. The researchers of the PEI were able to show that allergic symptoms could be prevented by vaccination with MVA-OVA and, what’s more, in collaboration with researchers of Tokyo University, Japan, they were able to establish that the vaccination could prevent inflammatory changes of the intestinal mucosa (see figure).

When examining the local immune response in the small intestine, the researchers were also able to prove – based on the modified release of the cytokines (inhibition of interleukin-4 and stimulation of interferon-gamma release) – that the adverse (allergic) response of TH2 helper cells was inhibited and the desired TH1 helper cell response was stimulated. ""This is the very result we wish to see in treating an allergy: the suppression of IgE and an increase in TH1 response"", Dr Stephan Scheurer explained the success of this approach. Dr Scheurer is the head of the Section "Recombinant Allergen Therapeutics" at the PEI.

The next steps to be taken by the researchers of the PEI will be to test how long this allergy protection will last and whether the therapy approach can be used to treat fully established allergies. ""If this is possible for our model allergen ovalbumin, we assume that the model can also be transferred to other food allergens"", explained Dr Scheurer.


An allergy involves an excessive TH2 helper cell response. TH2 helper cells are a specialised group of lymphocytes of the immune system. During an allergic reaction, these cells respond to usually harmless antigens such as pollen, but also antigens in peanuts, hen's eggs, etc. Specific immunotherapy intends to re-establish the immune balance in favour of a TH1 helper response. In the above-described novel approach of immunotherapy, the modified virus Ankara not only serves as a transport vehicle of genetic information of the allergen but is also an effective immune modulator, since it creates a strong TH1 helper cell response against antigens. This process involves induction of allergen specific IgG2a antibodies, which can act as blocking antibodies, as well as cytokines (interferon-gamma) which counteract allergic reactions. This helps to restore a normal immune response.


[1] Albrecht M, Suezer Y, Staib C, Sutter G, Vieths S, Reese G (2008): Vaccination with a Modified Vaccinia Virus Ankara-based vaccine protects mice from allergic sensitization. J Gene Med 10: 1324-1333. Online-Abstract.

Original publication

Bohnen C, Wangorsch A, Schülke S, Nakajima-Adachi H, Hachimura S, Burggraf M, Süzer Y, Schwantes A, Sutter G, Waibler Z, Reese G, Toda M, Scheurer S, Vieths S (2013): Vaccination with recombinant modified vaccinia virus1 Ankara prevents the onset of intestinal allergy in mice.

Allergy Jul 30 [Epub ahead of print].

Weitere Informationen:
- Publications Abstract
Abstract of J Gene Med-Paper

Press release on PEI-Website

Dr. Susanne Stöcker | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>