Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemicals and biofuel from wood biomass

19.12.2011
A method developed at Aalto University in Finland makes it possible to use microbes to produce butanol suitable for biofuel and other industrial chemicals from wood biomass. Butanol is particularly suited as a transport fuel because it is not water soluble and has higher energy content than ethanol.

Most commonly used raw materials in butanol production have so far been starch and cane sugar. In contrast to this, the starting point in the Aalto University study was to use only lignocellulose, otherwise known as wood biomass, which does not compete with food production. Another new breakthrough in the study is to successfully combine modern pulp - and biotechnology. Finland’s advanced forest industry provides particularly good opportunities to develop this type of bioprocesses.

Wood biomass is made up of three primary substances: cellulose, hemicelluloses and lignin. Of these three, cellulose and hemicellulose can be used as a source of nutrition for microbes in bioprocesses. Along with cellulose, the Kraft process that is currently used in pulping produces black liquor, which can already be used as a source of energy. It is not, however, suitable for microbes. In the study, the pulping process was altered so that, in addition to cellulose, the other sugars remain unharmed and can therefore be used as raw material for microbes.

When wood biomass is boiled in a mixture of water, alcohol and sulphur dioxide, all parts of the wood – cellulose, hemicellulose and lignin – are separated into clean fractions. The cellulose can be used to make paper, nanocellulose or other products, while the hemicellulose is efficient microbe raw material for chemical production. Thus, the advantage of this new process is that no parts of the wood sugar are wasted.

In accordance with EU requirements, all fuel must contain 10 per cent biofuel by 2020. A clear benefit of butanol is that a significantly large percentage – more than 20 per cent of butanol, can be added to fuel without having to make any changes to existing combustion engines. The nitrogen and carbon emissions from a fuel mix including more than 20 per cent butanol are significantly lower than with fossil fuels. For example, the incomplete combustion of ethanol in an engine produces volatile compounds that increase odour nuisances in the environment. Estimates indicate that combining a butanol and pulp plant into a modern biorefinery would provide significant synergy benefits in terms of energy use and biofuel production.

The project run by Aalto University is part of the Biorefine technology programme, which is primarily funded by Tekes, the Finnish Funding Agency for Technology and Innovation.

The Biorefine programme is developing new competence based on national strengths and related to the refining of biomass. The overall aim of the project is to increase the refining value of forest residues that cannot be utilised in, for example, the pulp process. The research has been developed by Professor Aadrian van Heiningen and Tom Granström and a group of researchers at Aalto University. Results of findings have been published in scientific journals such as Bioresource Technology. The developed technology has been patented.

Bibliographical details to the article: Survase, S.,Sklavounos, E., Jurgens, G., van Heiningen, A., Granström, T., Continuous Acetone-Butanol-Ethanol fermentation using SO2-ethanol-water spent liquor from spruce, Bioresource Technology (2011) doi:10.1016/j.biortech.2011.09.034

Further information: Tom Granström, Aalto University School of Chemical Technology, Department of Biotechnology and Chemical Technology

email, tom.granstrom@aalto.fi tel +358 50 512 42 32

Johanna Juselius
Aalto University Communications
tel +358 50 372 7062
email johanna.juselius@aalto.fi
Aalto University, Finland is a new multidisciplinary science and art community in the fields of science, economics, and art and design. The University is founded on Finnish strengths, and its goal is to develop as a unique entity to become one of the world's top universities. Aalto University's cornerstones are its strengths in education and research. At the new University, there are 20,000 basic degree and graduate students as well as a staff of 4,700 of which 340 are professors. http://www.aalto.fi/en/

Johanna Juselius | Aalto University, Finland
Further information:
http://www.aalto.fi/en/

More articles from Life Sciences:

nachricht Asian tiger mosquito on the move
20.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>