Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemicals and biofuel from wood biomass

19.12.2011
A method developed at Aalto University in Finland makes it possible to use microbes to produce butanol suitable for biofuel and other industrial chemicals from wood biomass. Butanol is particularly suited as a transport fuel because it is not water soluble and has higher energy content than ethanol.

Most commonly used raw materials in butanol production have so far been starch and cane sugar. In contrast to this, the starting point in the Aalto University study was to use only lignocellulose, otherwise known as wood biomass, which does not compete with food production. Another new breakthrough in the study is to successfully combine modern pulp - and biotechnology. Finland’s advanced forest industry provides particularly good opportunities to develop this type of bioprocesses.

Wood biomass is made up of three primary substances: cellulose, hemicelluloses and lignin. Of these three, cellulose and hemicellulose can be used as a source of nutrition for microbes in bioprocesses. Along with cellulose, the Kraft process that is currently used in pulping produces black liquor, which can already be used as a source of energy. It is not, however, suitable for microbes. In the study, the pulping process was altered so that, in addition to cellulose, the other sugars remain unharmed and can therefore be used as raw material for microbes.

When wood biomass is boiled in a mixture of water, alcohol and sulphur dioxide, all parts of the wood – cellulose, hemicellulose and lignin – are separated into clean fractions. The cellulose can be used to make paper, nanocellulose or other products, while the hemicellulose is efficient microbe raw material for chemical production. Thus, the advantage of this new process is that no parts of the wood sugar are wasted.

In accordance with EU requirements, all fuel must contain 10 per cent biofuel by 2020. A clear benefit of butanol is that a significantly large percentage – more than 20 per cent of butanol, can be added to fuel without having to make any changes to existing combustion engines. The nitrogen and carbon emissions from a fuel mix including more than 20 per cent butanol are significantly lower than with fossil fuels. For example, the incomplete combustion of ethanol in an engine produces volatile compounds that increase odour nuisances in the environment. Estimates indicate that combining a butanol and pulp plant into a modern biorefinery would provide significant synergy benefits in terms of energy use and biofuel production.

The project run by Aalto University is part of the Biorefine technology programme, which is primarily funded by Tekes, the Finnish Funding Agency for Technology and Innovation.

The Biorefine programme is developing new competence based on national strengths and related to the refining of biomass. The overall aim of the project is to increase the refining value of forest residues that cannot be utilised in, for example, the pulp process. The research has been developed by Professor Aadrian van Heiningen and Tom Granström and a group of researchers at Aalto University. Results of findings have been published in scientific journals such as Bioresource Technology. The developed technology has been patented.

Bibliographical details to the article: Survase, S.,Sklavounos, E., Jurgens, G., van Heiningen, A., Granström, T., Continuous Acetone-Butanol-Ethanol fermentation using SO2-ethanol-water spent liquor from spruce, Bioresource Technology (2011) doi:10.1016/j.biortech.2011.09.034

Further information: Tom Granström, Aalto University School of Chemical Technology, Department of Biotechnology and Chemical Technology

email, tom.granstrom@aalto.fi tel +358 50 512 42 32

Johanna Juselius
Aalto University Communications
tel +358 50 372 7062
email johanna.juselius@aalto.fi
Aalto University, Finland is a new multidisciplinary science and art community in the fields of science, economics, and art and design. The University is founded on Finnish strengths, and its goal is to develop as a unique entity to become one of the world's top universities. Aalto University's cornerstones are its strengths in education and research. At the new University, there are 20,000 basic degree and graduate students as well as a staff of 4,700 of which 340 are professors. http://www.aalto.fi/en/

Johanna Juselius | Aalto University, Finland
Further information:
http://www.aalto.fi/en/

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>