Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical strategy hints at better drugs for osteoporosis, diabetes

17.06.2014

By swapping replacement parts into the backbone of a synthetic hormone, UW–Madison graduate student Ross Cheloha and his mentor, Sam Gellman, along with collaborators at Harvard Medical School, have built a version of a parathyroid hormone that resists degradation in laboratory mice. As a result, the altered hormone can stay around longer — and at much higher concentration, says Gellman, professor of chemistry at the UW.

Hormones are signaling molecules that are distributed throughout the body, usually in the blood. Hormones elicit responses from only those cells that carry appropriate receptor molecules. "Receptors have evolved to recognize a very specific signal in a sea of biological fluids that is full of molecular messages," Gellman says.

The relationship between a receptor and its signaling molecule is often likened to that between a lock and a key.

"We're excited because we have preserved the ability to activate the receptor" by altering the backbone of the hormone, which holds the essential contact points in place, Gellman says. "While retaining, even enhancing, the signaling ability, we have diminished the peptide's susceptibility to the biodegradation mechanisms that nature uses to eliminate signals over time."

Peptides are segments of proteins. Peptide hormones, like the better-known steroid hormones such as estrogen and testosterone, can convey a signal to billions of cells at once, even at tiny concentrations.

For a study published June 15 in Nature Biotechnology, the researchers altered a highly successful synthetic parathyroid hormone called teriparatide, which is used to combat severe osteoporosis.

But the real excitement of the discovery is the potential impact on a large class of peptide drugs, Gellman says. "A substantial group of receptors, including some involved in diabetes, respond to peptide signals, but peptides are quickly degraded in the body. Our approach seems to suggest a general strategy to retain the ability to target a specific receptor while diminishing the action of degrading enzymes. The key is that the receptor is looking for one shape while the destructive enzyme seeks a different shape."

Gellman says the idea of replacing segments of the peptide backbone with artificial units once seemed heretical. "Most people expected that you could not change the backbone, which alters the spacing and orientation of the essential contact points, without making the molecule unrecognizable to the receptor."

Gellman has assigned his rights for the discovery to the Wisconsin Alumni Research Foundation. The study's first author, Cheloha, is a Ph.D. candidate in chemistry at UW-Madison. Co-author Thomas J. Gardella led a team at Harvard Medical School that conducted the biological assessments.

Potentially, the "alter-the-backbone" strategy could allow oral dosing of the rather fragile peptide drugs, which today must be injected to avoid destruction in the stomach and small intestine. By protecting the drugs from degrading enzymes, the new approach could also help sustain higher drug concentrations in the bloodstream.

The altered backbone also seems to make minor changes in signals that the receptor, once activated, transmits into the cell, Gellman says. "Changing the sites of backbone modification results in different profiles of response. Building drug molecules that activate only a certain type of response might allow us to dial out undesired side effects; but that's just a hope at this point."

To date, much of the focus on drug development has concerned the external features of signaling molecules, which directly contact a receptor, Gellman says. "The traditional approach is to keep the skeleton the same and modify the surface components. Our approach is just the opposite, keep the surface components the same, and modify the skeleton. Now that it is clear that this non-traditional approach can be successful, others are likely to try it."

###

The research was funded by National Institutes of Health grant #GM056414 and other sources.

—David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Sam Gellman | Eurek Alert!
Further information:
http://www.wisc.edu

Further reports about: concentrations drugs enzymes hormones osteoporosis receptor signals skeleton

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>