Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching a chemical butterfly

22.11.2010
Bulky molecules help trap boron compounds into a never-before-seen structural arrangement

When it comes to chemical bonding, boron has a reputation for being unconventional. While covalent bonds are usually formed by sharing two electrons between two atoms, some compounds—including diboranes (B2H6) —contain B–H–B bonds in which an electron pair is distributed over three sites.

The electron-deficient nature of these ‘3-center, 2-electron’ bonds can generate a variety of distinct chemical structures, some of which—such as triple-bonded diborane derivatives—have only been seen theoretically.

Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako and Kyoto University have now isolated the first stable diborane molecule with butterfly-shaped B–H–B bonds and a boron–boron link with triple bond characteristics1. This discovery unlocks new insights into the workings of 3-center, 2-electron boron interactions and puts scientists one step closer to synthesizing the elusive boron–boron triple bond.

The key to this approach is a bulky molecule known as ‘Eind’ that contains a rigid core of fused hydrocarbon rings covered with ethyl side chains. Previously, the researchers used Eind ligands to stabilize heavy elements into multiply bonded species2. This time, the team hoped to generate a neutral boron–boron double bond by substituting Eind groups for hydrogen atoms in diborane.

However, after characterizing the structure of the diborane–Eind compound—a difficult task requiring synchrotron x-rays to detect hydrogen atom positions—the researchers saw a previously unidentified arrangement at the B2H2 core: a central boron–boron connection nearly as short as a theoretical triple bond, flanked by two symmetric B–H–B ‘wings’ (Fig. 1). “We did not expect this butterfly-shaped structure at first, and finding it was a kind of serendipity,” says co-author Yoshiaki Shoji.

Quantum computations revealed that the Eind ligands enforced a linear bonding geometry upon the boron atoms, creating molecular energy levels closely related to the triple-bond species. Furthermore, the bridging hydrogen atoms enhanced the multiple bonding characteristics. “Based on this analysis, it is possible to consider triple bonding interactions between the two boron atoms,” says team-member Tsukasa Matsuo.

Matsuo notes that the butterfly-shaped molecule already displays unique chemical reactivity, and the insights gained from this new structure could lead to additional multiply-bonded diboranes. “We may be able to synthesize a more triply bonded species in the near future by replacing the bridging hydrogen atoms with alkali metals,” he says. “At the moment, this compound is just a dream but I think we have a chance to obtain it.”

The corresponding author for this highlight is based at the Functional Element-Organic Chemistry Unit, RIKEN Advanced Science Institute

1. Shoji, Y., Matsuo, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. A stable doubly hydrogen-bridged butterfly-shaped diborane(4) compound. Journal of the American Chemical Society 132, 8258–8260 (2010).

2. Li, B., Matsuo, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. ð-Conjugated phosphasilenes stabilized by fused-ring bulky groups. Journal of the American Chemical Society 131, 13222–13223 (2009).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>