Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching a chemical butterfly

22.11.2010
Bulky molecules help trap boron compounds into a never-before-seen structural arrangement

When it comes to chemical bonding, boron has a reputation for being unconventional. While covalent bonds are usually formed by sharing two electrons between two atoms, some compounds—including diboranes (B2H6) —contain B–H–B bonds in which an electron pair is distributed over three sites.

The electron-deficient nature of these ‘3-center, 2-electron’ bonds can generate a variety of distinct chemical structures, some of which—such as triple-bonded diborane derivatives—have only been seen theoretically.

Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako and Kyoto University have now isolated the first stable diborane molecule with butterfly-shaped B–H–B bonds and a boron–boron link with triple bond characteristics1. This discovery unlocks new insights into the workings of 3-center, 2-electron boron interactions and puts scientists one step closer to synthesizing the elusive boron–boron triple bond.

The key to this approach is a bulky molecule known as ‘Eind’ that contains a rigid core of fused hydrocarbon rings covered with ethyl side chains. Previously, the researchers used Eind ligands to stabilize heavy elements into multiply bonded species2. This time, the team hoped to generate a neutral boron–boron double bond by substituting Eind groups for hydrogen atoms in diborane.

However, after characterizing the structure of the diborane–Eind compound—a difficult task requiring synchrotron x-rays to detect hydrogen atom positions—the researchers saw a previously unidentified arrangement at the B2H2 core: a central boron–boron connection nearly as short as a theoretical triple bond, flanked by two symmetric B–H–B ‘wings’ (Fig. 1). “We did not expect this butterfly-shaped structure at first, and finding it was a kind of serendipity,” says co-author Yoshiaki Shoji.

Quantum computations revealed that the Eind ligands enforced a linear bonding geometry upon the boron atoms, creating molecular energy levels closely related to the triple-bond species. Furthermore, the bridging hydrogen atoms enhanced the multiple bonding characteristics. “Based on this analysis, it is possible to consider triple bonding interactions between the two boron atoms,” says team-member Tsukasa Matsuo.

Matsuo notes that the butterfly-shaped molecule already displays unique chemical reactivity, and the insights gained from this new structure could lead to additional multiply-bonded diboranes. “We may be able to synthesize a more triply bonded species in the near future by replacing the bridging hydrogen atoms with alkali metals,” he says. “At the moment, this compound is just a dream but I think we have a chance to obtain it.”

The corresponding author for this highlight is based at the Functional Element-Organic Chemistry Unit, RIKEN Advanced Science Institute

1. Shoji, Y., Matsuo, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. A stable doubly hydrogen-bridged butterfly-shaped diborane(4) compound. Journal of the American Chemical Society 132, 8258–8260 (2010).

2. Li, B., Matsuo, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. ð-Conjugated phosphasilenes stabilized by fused-ring bulky groups. Journal of the American Chemical Society 131, 13222–13223 (2009).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>