Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in hydrogen fuel cells

31.08.2011
USC chemists develop way to safely store, extract hydrogen

A team of USC scientists has developed a robust, efficient method of using hydrogen as a fuel source.

Hydrogen makes a great fuel because of it can easily be converted to electricity in a fuel cell and because it is carbon free. The downside of hydrogen is that, because it is a gas, it can only be stored in high pressure or cryogenic tanks.

In a vehicle with a tank full of hydrogen, "if you got into a wreck, you'd have a problem," said Travis Williams, assistant professor of chemistry at the USC Dornsife College.

A possible solution is to store hydrogen in a safe chemical form. Earlier this year, Williams and his team figured out a way to release hydrogen from an innocuous chemical material — a nitrogen-boron complex, ammonia borane — that can be stored as a stable solid.

Now the team has developed a catalyst system that releases enough hydrogen from its storage in ammonia borane to make it usable as a fuel source. Moreover, the system is air-stable and re-usable, unlike other systems for hydrogen storage on boron and metal hydrides.

The research was published this month in the Journal of the American Chemical Society.

"Ours is the first game in town for reusable, air stabile ammonia borane dehydrogenation," Williams said, adding that the USC Stevens Institute is in the process of patenting the system.

The system is sufficiently lightweight and efficient to have potential fuel applications ranging from motor-driven cycles to small aircraft, he said.

The research was funded by the Hydrocarbon Research Foundation and the National Science Foundation.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>