Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Makes Decisions with Same Method Used to Break WW2 Enigma Code

26.02.2015

When making simple decisions, neurons in the brain apply the same statistical trick used by Alan Turing to help break Germany’s Enigma code during World War II, according to a new study in animals by researchers at Columbia University’s Zuckerman Mind Brain and Behavior Institute. Results of the study were published Feb. 5 in Neuron.


Michael Shadlen

An Enigma machine at the Walker Library of the History of Human Imagination.

As depicted in the film “The Imitation Game,” Alan Turing and his team of codebreakers devised the statistical technique to help them decipher German military messages encrypted with the Enigma machine. (The technique today is called Wald’s sequential probability ratio test, after Columbia professor Abraham Wald, who independently developed the test to determine if batches of munitions should be shipped to the front or if they contained too many duds.)

Finding pairs of messages encrypted with the same Enigma settings was critical to unlocking the code. Turing’s statistical test, in essence, decided as efficiently as possibly if any two messages were a pair.

The test evaluated corresponding pairs of letters from the two messages, aligned one above the other (in the film, codebreakers are often pictured doing this in the background, sliding messages around on grids). Although the letters themselves were gibberish, Turing realized that Enigma would preserve the matching probabilities of the original messages, as some letters are more common than others.

The codebreakers assigned values to aligned pairs of letters in the two messages. Unmatched pairs were given a negative value, matched pairs a positive value.

Starting at different points in the messages, the codebreakers began adding and subtracting. When the sum reached a positive of negative threshold, the two messages were deemed a pair from machines with the same setting, or not.

Neurons in the brains of rhesus monkeys do the same thing when faced with decisions, says Michael Shadlen, MD, PhD, professor of neuroscience at Columbia and an HHMI investigator.

In his study, Dr. Shadlen and co-first authors Shinichiro Kira, a former member of Dr. Shadlen’s lab and currently at Harvard Medical School, and Tianming Yang, of Shanghai Institutes for Biological Sciences, recorded the activity of neurons in the brains of two monkeys as they made a simple decision: look at a sequence of symbols on a computer screen, one after another, and whenever ready, choose between two spots for a reward.

To make the correct decision—the one that brought a reward—the monkeys had to weigh different clues encoded in the symbols that flashed onto the screen. Some of the eight symbols were unreliable clues about the reward’s location; others were more dependable.

And the monkeys had to think fast. Each symbol appeared for only 250 milliseconds.

As the monkeys watched the symbols, recordings of their neurons revealed how they came to a decision. Each symbol contributed a positive value (reward is in the left spot) or negative value (reward is in the right spot) to the accumulated evidence, which was represented in the neuron’s firing rate. More reliable symbols had a larger impact on the firing rate than less reliable symbols.

Just as in the Turing’s code breaking, once a positive or negative threshold was reached, the decision was deemed complete and the monkey indicated its choice.

Assuming that humans have the same capabilities—and that’s a good bet, says Dr. Shadlen—it means our brains are weighing probabilities and making rational decisions in very short periods of time. “It’s the basis of a very basic kind of rationality,” he says.

These types of decisions are mostly unconscious on our part. “They’re decisions like, ‘I’m going to pick up a book,’ or ‘I’m going to walk toward the left of the coffee table, not the right,’” Dr. Shadlen adds.

“We make lots of these decisions every day, and it turns out, we’re making them by using the laws of probability in a way that statisticians think is optimal.”

The paper is titled "A neural implementation of Wald's sequential probability ratio test."

The work was supported by the National Institutes of Health (EY011378, RR000166, and P30EY01730) and the Howard Hughes Medical Institute. S.K. was supported by a predoctoral fellowship from the Nakajima Foundation.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org

Contact Information
Lucky Tran
Science Media Relations Officer
lt2549@columbia.edu
Phone: 212-305-3689

Lucky Tran | newswise

Further reports about: Enigma Sciences decisions monkeys neurons technique threshold

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>