Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Makes Decisions with Same Method Used to Break WW2 Enigma Code

26.02.2015

When making simple decisions, neurons in the brain apply the same statistical trick used by Alan Turing to help break Germany’s Enigma code during World War II, according to a new study in animals by researchers at Columbia University’s Zuckerman Mind Brain and Behavior Institute. Results of the study were published Feb. 5 in Neuron.


Michael Shadlen

An Enigma machine at the Walker Library of the History of Human Imagination.

As depicted in the film “The Imitation Game,” Alan Turing and his team of codebreakers devised the statistical technique to help them decipher German military messages encrypted with the Enigma machine. (The technique today is called Wald’s sequential probability ratio test, after Columbia professor Abraham Wald, who independently developed the test to determine if batches of munitions should be shipped to the front or if they contained too many duds.)

Finding pairs of messages encrypted with the same Enigma settings was critical to unlocking the code. Turing’s statistical test, in essence, decided as efficiently as possibly if any two messages were a pair.

The test evaluated corresponding pairs of letters from the two messages, aligned one above the other (in the film, codebreakers are often pictured doing this in the background, sliding messages around on grids). Although the letters themselves were gibberish, Turing realized that Enigma would preserve the matching probabilities of the original messages, as some letters are more common than others.

The codebreakers assigned values to aligned pairs of letters in the two messages. Unmatched pairs were given a negative value, matched pairs a positive value.

Starting at different points in the messages, the codebreakers began adding and subtracting. When the sum reached a positive of negative threshold, the two messages were deemed a pair from machines with the same setting, or not.

Neurons in the brains of rhesus monkeys do the same thing when faced with decisions, says Michael Shadlen, MD, PhD, professor of neuroscience at Columbia and an HHMI investigator.

In his study, Dr. Shadlen and co-first authors Shinichiro Kira, a former member of Dr. Shadlen’s lab and currently at Harvard Medical School, and Tianming Yang, of Shanghai Institutes for Biological Sciences, recorded the activity of neurons in the brains of two monkeys as they made a simple decision: look at a sequence of symbols on a computer screen, one after another, and whenever ready, choose between two spots for a reward.

To make the correct decision—the one that brought a reward—the monkeys had to weigh different clues encoded in the symbols that flashed onto the screen. Some of the eight symbols were unreliable clues about the reward’s location; others were more dependable.

And the monkeys had to think fast. Each symbol appeared for only 250 milliseconds.

As the monkeys watched the symbols, recordings of their neurons revealed how they came to a decision. Each symbol contributed a positive value (reward is in the left spot) or negative value (reward is in the right spot) to the accumulated evidence, which was represented in the neuron’s firing rate. More reliable symbols had a larger impact on the firing rate than less reliable symbols.

Just as in the Turing’s code breaking, once a positive or negative threshold was reached, the decision was deemed complete and the monkey indicated its choice.

Assuming that humans have the same capabilities—and that’s a good bet, says Dr. Shadlen—it means our brains are weighing probabilities and making rational decisions in very short periods of time. “It’s the basis of a very basic kind of rationality,” he says.

These types of decisions are mostly unconscious on our part. “They’re decisions like, ‘I’m going to pick up a book,’ or ‘I’m going to walk toward the left of the coffee table, not the right,’” Dr. Shadlen adds.

“We make lots of these decisions every day, and it turns out, we’re making them by using the laws of probability in a way that statisticians think is optimal.”

The paper is titled "A neural implementation of Wald's sequential probability ratio test."

The work was supported by the National Institutes of Health (EY011378, RR000166, and P30EY01730) and the Howard Hughes Medical Institute. S.K. was supported by a predoctoral fellowship from the Nakajima Foundation.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org

Contact Information
Lucky Tran
Science Media Relations Officer
lt2549@columbia.edu
Phone: 212-305-3689

Lucky Tran | newswise

Further reports about: Enigma Sciences decisions monkeys neurons technique threshold

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>