Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood vessel forming potential of stem cells from human placenta and umbilical cord blood

20.07.2012
A study comparing whether endothelial colony-forming cells (ECFCs) derived from human placenta or those derived from human umbilical cord blood are more proliferative and better for forming new blood vessels has found that ECFCs derived from human placenta are more vasculogenic.
The study, carried out by researchers at the Indiana School of Medicine, is published in a recent issue of Cell Medicine [2(3)] and is freely available on-line at: http://www.ingentaconnect.com/content/cog/cm.

"Circulating ECFCs isolated from umbilical cord blood and those isolated from human placenta are phenotypically identical and have equivalent proliferative potential," said study lead author Michael P. Murphy, MD of the Indiana University's Department of Surgery. "After transplantation, the circulating placenta-derived ECFCs formed significantly more blood vessels in vivo than the ECFCs derived from umbilical cord blood, indicating not only that there are inherent functional differences between resident and circulating ECFC populations, but that the placenta-derived cells are more vasculogenic."

Umbilical cord blood and the extra-embryonic membranes of placenta are ideal sources of progenitor cells, said the researchers, because the tissues are discarded as medical waste and ethical concerns facing embryonic stem cells are avoided. The quantity of cells that can be derived from placenta, however, is much greater than the amount that can be derived from umbilical cord blood, making the placenta the more abundant source.

They concluded that the placenta represents an abundant source of ECFCs that could provide a therapeutic dose of cells.

"The potential volume of placenta-derived ECFCs that can be harvested from a single placenta would provide a sufficient dose of cells without the necessity of expansion," noted Murphy.

According to the researchers, the role of circulating ECFCs has yet to be determined, yet circulating mature endothelial cells are rarely found in normal, healthy individuals as they are markers of vascular damage, remodeling and dysfunction.

"We envision that placenta-derived ECFCs may provide some benefit in neonatal cerebral ischema or can be used for tissue banking for future and be useful in treating cardiovascular disease," said Murphy and his colleagues.

Citation. Rapp, B. M.; Saadatzedeh, M. R.; Ofstein, R. H.; Bhavsar, J. R.; Tempel, Z. S.; Moreno, O.; Morone, P.; Booth, D. A.; Traktuev, D. O.; Dalsing, M. C.; Ingram, D. A.; Yoder, M. C.; March, K. L.; Murphy, M. P. Resident Endothelial Progenitor Cells From Human Placenta Have Greater Vasculogenic Potential Than Circulating Endothelial Progenitor Cells From Umbilical Cord Blood Cell Med. 2(3):85-96; 2011.

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/cm

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>