Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking cancer in its path: New cellular defect discovered

17.03.2010
UCSF researchers have discovered that a key cellular defect that disturbs the production of proteins in human cells can lead to cancer susceptibility. The scientists also found that a new generation of inhibitory drugs offers promise in correcting this defect.

According to the study team, this discovery has broad clinical implications in the fight against cancer and could affect treatment of lymphoma and many other forms of the disease, including prostate cancer, breast cancer, colorectal cancer, brain cancer and multiple myeloma.

The findings are featured as the cover story in the March 16, 2010 issue of the scientific journal Cancer Cell (http://www.cell.com/cancer-cell/issue?pii=S1535-6108%2810%29X0004-6).

The discovery was made in the laboratory of UCSF faculty scientist Davide Ruggero, PhD, whose lab team is doing research in the burgeoning field of study on how defects in protein synthesis can lead to cancer susceptibility.

“Our work has the potential to create real, tangible benefits for the medical community,” said Ruggero, an assistant professor of urology at the UCSF Helen Diller Family Comprehensive Cancer Center and senior author of the paper.

The researchers focused on a multi-protein unit known as mTOR, which stands for the “mammalian target of rapamycin.” mTOR controls several important processes in mammalian cells, including cell survival and proliferation.

One of the most significant of these processes is the production of proteins within a cell, the control of which is known as translational control. mTOR integrates information about the cell’s nutritional and energy needs, and prompts the cell to manufacture key proteins for cell growth. Cancer cells exploit this signal for their own growth.

According to the researchers, when the cells in the body lose the ability to control mTOR activity, mTOR is considered “hyperactivated.” This hyperactivation causes protein synthesis rates to climb. Cells begin to proliferate without limits and simultaneously become immortal, all of which leads to tumor formation.

“Our findings show that for a cancer cell, normal cellular functions such as protein synthesis can be specifically hijacked for tumor growth,” explained first author Andrew Hsieh, a clinical fellow at the UCSF School of Medicine and the Department of Urology at the Helen Diller Family Comprehensive Cancer Center.

Ruggero said that the “dismal” clinical results seen with first generation mTOR inhibitor drugs like rapamycin “stemmed in part from the inadequate limit on unhealthy protein synthesis that is caused by hyperactivated mTOR.”

Researchers in his laboratory made this key discovery through genetic tests that demonstrate that healthy genes in charge of protein production can become cancerous when mTOR is hyperactivated. To combat this, the scientists employed a new drug called PP242. This drug was discovered at UCSF in the lab of Kevan Shokat, PhD, Howard Hughes Medical Investigator and professor of cellular and molecular pharmacology at UCSF.

“This drug has shown promising results by bringing protein synthesis and cell proliferation levels back down to normal rates,” Ruggero said. “In addition, PP242 helps fight the process of immortalization that cancer cells go through.”

In their findings, PP242 proved to be more effective than similar drugs in its ability to jumpstart translational control in both live mice and human cells tested in the lab. PP242 is currently in Phase 1 clinical trials.

“We demonstrated that the drug kills the cancer cells more effectively because it blocks the abnormal production of proteins,” said Ruggero. “The other drugs we tested did not show clinical effectiveness in blocking cancer development in this manner.’’

The authors say that PP242 could become a potent cancer treatment. The findings are a positive step, Ruggero said, because what have previously been considered unresponsive tumors can now be treated with the second generation of inhibitors that halt mTOR’s action on protein production.

“We are extremely excited about our findings and the potential of targeting aberrant protein synthesis and mTOR in cancer as we should be able to block cancer’s main source of growth,” said Ruggero. “We are working with clinicians to test our hypothesis in a variety of human tumors.”

Co-authors working in Ruggero’s lab during the research project include clinical fellow Cole Davis, PhD, as well as post-doctoral fellows Maria Costa, PhD, and Ornella Zollo, PhD. Zollo is funded by the American-Italian Cancer Foundation. Ruggero’s UCSF collaborators and co-authors also include Shokat, who develops chemical methods to decipher the role of individual kinases and their cellular signaling networks, and his post-doctoral fellow, Morris Feldman, PhD.

Ruggero’s outside collaborators were Joseph Testa, PhD, co-director of the Fox Chase Cancer Biology Program, and Oded Meyuhas, PhD, head of the Department of Biochemistry at the Hebrew University in Jerusalem.

The research was funded by the National Institutes of Health. Ruggero is a Leukemia & Lymphoma Society Scholar.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Elizabeth Fernandez | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>