Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bizarre Crocodile Fossil Discovered Dispels Notion That These Reptiles are Static and Unchanging

10.12.2010
Head skeleton structures described in exceptional detail down to the pathways of the tiniest nerves and blood vesels

We all know that crocodiles are reptiles with long snouts, conical teeth, strong jaws and long tails. But according to researchers at Stony Brook University in New York, we don’t know what we thought we knew.

Rather, some crocodiles possessed a dazzling array of adaptations that resulted in unique and sometimes bizarre anatomy, including blunt, pug-nosed snouts, pudgy bodies and short tails.

These anatomical adaptations of the incredibly diverse group of reptiles called notosuchian crocodyliforms are brilliantly illuminated in a new Memoir of the Society of Vertebrate Paleontology. This massive, richly illustrated volume, edited by Drs. David W. Krause and Nathan J. Kley of Stony Brook, clearly dispels the notion that crocodiles are static, unchanging “living fossils.”

The volume, which gives an account of fossil crocodyliform anatomy that is unprecedented in its thoroughness, is set for publication on December 8, 2010.

The epitome of crocodyliform anomaly is represented by Simosuchus clarki, which lived in Madagascar at the end of the “Age of Dinosaurs” (about 66 million years ago). First described preliminarily in 2000 from a well-preserved skull and partial skeleton, Simosuchus shattered the crocodyliform mold with its blunt snout, leaf-shaped teeth, and short, tank-like body covered in a suit of bony armor.

“ Simosuchus is easily the most bizarre crocodyliform ever found,” declared Dr. Christopher Brochu, a leading expert on fossil crocodiles from the University of Iowa.

Over the next decade, expeditions to Madagascar recovered more skulls and skeletons, now representing nearly every bone of Simosuchus. A reconstruction of this uncommonly complete fossil reptile and an interpretation of its place in the crocodile evolutionary tree became the subject of the new volume.

“The completeness and preservation of the specimens demanded detailed treatment,” said Krause, Distinguished Service Professor in the Department of Anatomical Sciences at Stony Brook University. “It just seemed unconscionable to not document such fantastic fossil material of this unique animal.”

Brochu, who did not participate in the research, said that “very few crocodilians – even those alive today – have been subjected to this level of analysis. This reference sets a new standard for analyses of extinct crocodyliforms and is going to used for decades.”

A separate chapter of the monograph is devoted to each of the major parts of the animal – skull, backbone, limbs, and armor.

“The skull and lower jaw in particular are preserved almost completely,” said Kley, assistant professor in the Department of Anatomical Sciences at Stony Brook University. “This, combined with high-resolution CT scans of the most exquisitely preserved specimen, has allowed us to describe the structure of the head skeleton – both externally and internally – in exceptional detail, including even the pathways of the tiniest nerves and blood vessels.”

But while it is easy to lose one-self in the details of these incredible fossils, one of the most amazing features is the overall shape of the animal. Two feet long, pudgy, with a blunt snout and the shortest tail of any known crocodyliform, Simosuchus was not equipped to snatch unsuspecting animal prey from the water’s edge as many modern crocodiles do.

“Simosuchus lived on land, and its crouched posture and wide body probably meant it was not very agile or fast,” said Joseph Sertich, a Ph.D. student in the Department of Anatomical Sciences at Stony Brook who participated in the research.

In addition, its short, under-slung jaw and weak, leaf-shaped teeth show that it probably munched on a diet of plants. While the idea of a gentle, vegetarian crocodile is unusual to us today, the new memoir makes it easy to imagine Simosuchus ambling through its semi-arid grassland habitat, pausing to nip at plants and crouching low to hide from predators like the meat-eating dinosaur Majungasaurus.

The paleontologists also found evidence that pointed to the evolutionary origin of Simosuchus. “Interestingly, an analysis of evolutionary relationships suggests Simosuchus’ closest relative lived much earlier, in Egypt,” said Sertich.

Details like these are crucial to deciphering the pattern of the dispersal of life around the globe, an area of scientific study known as biogeography. Whatever its ancestry, Simosuchus has set a surprising new standard for what constitutes a crocodile.

The article appears in the Journal of Vertebrate Paleontology 30(6, Supplement) published by Taylor and Francis.

ABOUT THE SOCIETY OF VERTEBRATE PALEONTOLOGY
Founded in 1940 by 34 paleontologists, the Society now has over 2,000 members representing professionals, students, artists, preparators, and others interested in vertebrate paleontology. It is organized exclusively for educational and scientific purposes, with the object of advancing the science of vertebrate paleontology.
The Journal of Vertebrate Paleontology
The Journal of Vertebrate Paleontology (JVP) is the leading journal of professional vertebrate paleontology and the flagship publication of the Society. It was founded in 1980 by Dr. Jiri Zidek and publishes contributions on all aspects of vertebrate paleontology.

Citation: D. W. Krause and N. J. Kley (eds.), Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Society of Vertebrate Paleontology Memoir 10. Journal of Vertebrate Paleontology 30(6, Supplement).

Journal Web site: Society of Vertebrate Paleontology: http://www.vertpaleo.org

| Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>