Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The battle of the morphogens: How to get ahead in the nervous system

02.09.2011
Salk scientists discover a highly conserved mechanism governing brain development

If you think today's political rhetoric is overheated, imagine what goes on inside a vertebrate embryo. There, two armies whose agendas are poles apart, engage in a battle with consequences much more dire than whether the economy will recover---- they are battling for whether you (or frogs or chickens) will have a forebrain.

In a study published in the August 19 online edition of Genes & Development, Salk Institute investigators led by Greg Lemke, Ph.D., professor in the Molecular Neurobiology Laboratory, reveals that a foot soldier of one army---- the ventralizers---deploys a weapon that disarms the other---- the dorsalizers---leaving the embryo free to develop a proper brain. Those findings define how the embryonic nervous system develops and could shed light on mechanisms underlying colon cancer.

The Lemke lab has a long-term interest in how different cell types emerging along the dorsal/ventral, or "top-to-bottom", axis of the nervous system are determined by competition between two secreted factors, or "morphogens"----the dorsalizer Wnt, trickling down from the brain or eye's "north pole" and its ventralizing opponent Sonic Hedgehog, creeping up from the "south".

"Opposing morphogen gradients regulate genes that must be expressed at either the top or the bottom of the brain for normal development to occur," says Lemke. "Those same signals must also be carefully controlled later on in mature tissues. An important example is provided by cancer, where over-active Wnt signaling is often linked to tumor formation."

The Lemke lab previously showed that a pair of Vax proteins, which bind DNA and regulate gene expression, are expressed in a gradient opposite to Wnts----high at the brain or eye's south, or ventral, pole and lower as you move north. This led them to propose that in response to Sonic Hedgehog signaling, Vax proteins ventralize tissues by blocking Wnt signals.

To test this idea they set up a genomic screen to search for Wnt inhibitors switched on by Vax. They found that Vax bound to a DNA sequence, or promoter, unusually positioned in the middle of a gene, rather than flanking it. And that gene---- designated Tcf7l2 ---- encoded a transcription factor normally deployed by Wnt to dorsalize target tissue.

The paradox was explained when the group showed that Vax activated expression of a molecular decoy, namely a stump of Tcf7l2 protein missing its front end, the part required for it to activate gene expression. When bound to DNA the fragment would instead recruit repressor proteins to silence dorsalizing signals. "Cells expressing the inhibitor would be blind to Wnt signaling," says Lemke.

Full-length Tcf7l2 proteins pair with an activator called ß-catenin. But truncated Tcf7l2 lacks the ß-catenin interaction region, short-circuiting its function. Scientists call such interfering proteins "dominant negatives."

Tomas Vacik, Ph.D., a postdoctoral fellow in the Lemke lab and the study's first author, re-evaluated gene expression patterns in mice the lab had engineered to lack Vax2. "We found that Vax2 was necessary for expression of a group of Wnt antagonists in the mouse eye, including dominant negative Tcf7l2" he says.

Bioinformatics analysis of the Tcf7l2 DNA sequence bound by Vax revealed another surprise. Approximately 700 base pairs, or nucleotides, of the mouse genome around the Vax binding site in Tcf7l2 showed an astonishing 99% identity between mouse, humans, and chickens and 85% identity with fish, a conservation Lemke calls, "exceptional in the extreme."

"This means that over several million years of evolution, Mother Nature says you can't change a single nucleotide, " he says. "That tells you straightway that this DNA sequence fulfills a very important regulatory function."

Database searches revealed that truncated Tcf7l2 is expressed in human brain cells, and the group's own analysis revealed similar constructs in the heads of frog embryos. "These results suggest that dnTcf7l2 has been highly conserved during evolution for its ability to powerfully repress Wnt target genes," says Vacik.

Previously, other investigators have found that mice harboring mutations in Wnt inhibitor genes often exhibit severely truncated forebrains. So the group asked whether loss of the dominant negative Tcf7l2 would perturb head formation. To test that they injected frog embryos with a short inhibitory RNA designed to artificially degrade the frog version of truncated Tcf7l2.

The resulting embryos were essentially headless, showing complete loss of structures in front of the midbrain, the very point where Wnt signaling is brought to a grinding halt in normal mouse or frog embryos by the opposing ventral morphogen sonic hedgehog and its henchman Vax. This is the first study to provide an explanation for how this molecular line in the sand is drawn.

"Our results illustrate a very basic principle-that if you have the power to turn something on, you must have the ability to turn it off. Otherwise, you set up a situation of uncontrolled signaling," says Lemke.

The disastrous outcome of uncontrolled signaling is also illustrated by the fact that cancer cells often show aberrant reactivation of factors governing normal development. Some colon cancer tumors, for example, show high levels of Tcf7l2's partner ß-catenin and resulting unchecked Wnt signaling causes the disease. More intriguingly, the inability of tumor cells to make a short, inhibitory form of a factor related to Tcf7l2 is also associated with tumorigenicity.

"So Wnts and sonic hedgehog may be in competition in colon cancer just like they are in the brain," Lemke says. "Our work could provide insight into how that happens mechanistically. "

Also contributing to this study was Jennifer Stubbs, Ph.D., a former postdoctoral fellow in the Molecular Neurobiology Laboratory now at Pathway Genomics in San Diego.

Funding for the study came from the National Institutes of Health.

About the National Institutes of Health (NIH): The Nation's Medical Research Agency includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>