Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Basic research enhances potential for cultivation in extreme climates

Research on gene expression has resulted in plants that can survive drought, high salt concentrations, and infections. This opens the possibility of forestry in harsh climates. The plants produce more leaves than usual, which mean that they can yield more food per plant. These are the findings of researchers at Umeå University in Sweden in an article in the Proceedings of the American Academy of Sciences, PNAS.

All living organisms are dependent on water, but this is especially true for plants. Limited access to water is one of the decisive factors for humans to be able to survive in large parts of the earth. The development of plants (crops) with greater tolerance for drought is of great importance for more people to be able to live a decent life.

In a pure basic research project, where the goal was to understand how cells regulate protein expression, scientists in Umeå have now taken a giant step forward on the road to developing plants with greater resistance to drought, infections, and high concentrations of salt. By deactivating a gene that codes for a protein that is part of the so-called mediator complex in the plant mouse-ear cress, the researchers have shown that these plants evince a much greater ability to survive drought. At the same time, they have stronger resistance to high salt concentrations and their blooming is delayed, which indirectly leads to increased leaf production.

The research project is a collaboration between scientists at the Department of Medical Biochemistry and Biophysics at Umeå University and the Department of Forest Genetics and Plant Physiology and the Department of Microbiology at the Swedish University of Agricultural Sciences (SLU).

For more information, please contact Stefan Björklund at
Mobile: +46 (0)70-216 28 90
Phone: +46 (0)90-786 67 88
Stefan Björklund is professor of medical chemistry at the Department of Medical Chemistry and Biophysics, Umeå University.
Original article:
The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development Nils Elfving, Céline Davoine, Reyes Benlloch, Jeanette Blomberg, Kristoffer Brännström, Dörte Müller, Anders Nilsson, Mikael Ulfstedt, Hans Ronne, Gunnar Wingsle, Ove Nilsson and Stefan Björklund. Proceedings of the National Academy of Sciences (PNAS) 2011; published ahead of print May 2, 2011.

Bertil Born | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>