Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Baculovirus-recognizing human cell receptor identified for the first time

The receptor used by baculovirus to enter and interact with human cells has been identified.

This syndecan-1 receptor was identified for the first time in a recent collaborative study carried out by the University of Eastern Finland and the University of Jyväskylä in Finland.

The findings increase our understanding of the strategies by which the virus causes infection in cells and further facilitates the development of baculovirus for applications of gene transfer. According to the researchers, the identification of the syndecan-1 receptor helps in understanding the ways baculovirus interacts with human cells and sheds further light on the mechanisms the virus uses in human cells.

The study also focused on the role of the syndecan-1 receptor in the cell penetration of baculovirus.

The study was published in the prestigious Journal of Virology. The article was featured in the Spotlight section of the journal, which is reserved for especially interesting and distinguished publications.

Used in drugs and vaccines

Baculovirus is an insect-infecting virus, which is largely utilised in biotechnology applications. Baculoviruses are used, for example, in the manufacturing of Glybera, the first gene therapy of the Western world, and in the manufacturing of the cancer vaccines Cervarix and Provenge, and the influenza vaccine Flublok. The technology is approved by the U.S. Food and Drug Administration, FDA, and the European Medicines Agency, EMA.

Baculovirus is not harmful to human cells, and this is why baculoviruses have become subjects of intensive research also with regard to gene therapy. In gene therapy, DNA to correct genetic errors is transported into cells using a variety of methods. Earlier studies have not been able to identify the receptor that recognises the virus, despite the fact that baculovirus has been studied intensively for decades.

The doctoral dissertation of Ms Paula Turkki, MA, on the topic in the field of cell and molecular biology will be publicly examined at the Department of Biological and Environmental Science of the University of Jyväskylä on 25 October 2013.

For further information, please contact:

Professor Kari Airenne, kari.airenne(at), University of Eastern Finland, tel. +358 40 3553131

Early Stage Researcher Emilia Makkonen, MA, emilia.makkonen(at), University of Eastern Finland, tel. +358 40 3553797

University Lecturer Varpu Marjomäki, University of Jyväskylä, tel. +358 40 563 4422, varpu.s.marjomaki(at)

Academy Professor Seppo Ylä-Herttuala, University of Eastern Finland, seppo.ylaherttuala(at), tel. +358 40 3552075

Article in Journal of Virology:

Makkonen KE, Turkki P, Laakkonen JP, Ylä-Herttuala S, Marjomäki V, Airenne KJ. 6-O- and N-sulfated syndecan-1 promotes baculovirus binding and entry into Mammalian cells. Journal of Virology. 2013. 87(20):11148-11159.

Kari Airenne | EurekAlert!
Further information:

Further reports about: Baculovirus-recognizing Virology gene therapy genetic error human cell

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>