Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baculovirus-recognizing human cell receptor identified for the first time

30.09.2013
The receptor used by baculovirus to enter and interact with human cells has been identified.

This syndecan-1 receptor was identified for the first time in a recent collaborative study carried out by the University of Eastern Finland and the University of Jyväskylä in Finland.

The findings increase our understanding of the strategies by which the virus causes infection in cells and further facilitates the development of baculovirus for applications of gene transfer. According to the researchers, the identification of the syndecan-1 receptor helps in understanding the ways baculovirus interacts with human cells and sheds further light on the mechanisms the virus uses in human cells.

The study also focused on the role of the syndecan-1 receptor in the cell penetration of baculovirus.

The study was published in the prestigious Journal of Virology. The article was featured in the Spotlight section of the journal, which is reserved for especially interesting and distinguished publications.

Used in drugs and vaccines

Baculovirus is an insect-infecting virus, which is largely utilised in biotechnology applications. Baculoviruses are used, for example, in the manufacturing of Glybera, the first gene therapy of the Western world, and in the manufacturing of the cancer vaccines Cervarix and Provenge, and the influenza vaccine Flublok. The technology is approved by the U.S. Food and Drug Administration, FDA, and the European Medicines Agency, EMA.

Baculovirus is not harmful to human cells, and this is why baculoviruses have become subjects of intensive research also with regard to gene therapy. In gene therapy, DNA to correct genetic errors is transported into cells using a variety of methods. Earlier studies have not been able to identify the receptor that recognises the virus, despite the fact that baculovirus has been studied intensively for decades.

The doctoral dissertation of Ms Paula Turkki, MA, on the topic in the field of cell and molecular biology will be publicly examined at the Department of Biological and Environmental Science of the University of Jyväskylä on 25 October 2013.

For further information, please contact:

Professor Kari Airenne, kari.airenne(at)uef.fi, University of Eastern Finland, tel. +358 40 3553131

Early Stage Researcher Emilia Makkonen, MA, emilia.makkonen(at)uef.fi, University of Eastern Finland, tel. +358 40 3553797

University Lecturer Varpu Marjomäki, University of Jyväskylä, tel. +358 40 563 4422, varpu.s.marjomaki(at)jyu.fi

Academy Professor Seppo Ylä-Herttuala, University of Eastern Finland, seppo.ylaherttuala(at)uef.fi, tel. +358 40 3552075

Article in Journal of Virology:

Makkonen KE, Turkki P, Laakkonen JP, Ylä-Herttuala S, Marjomäki V, Airenne KJ. 6-O- and N-sulfated syndecan-1 promotes baculovirus binding and entry into Mammalian cells. Journal of Virology. 2013. 87(20):11148-11159. http://jvi.asm.org/content/87/20/11148.abstract

Kari Airenne | EurekAlert!
Further information:
http://www.uef.fi

Further reports about: Baculovirus-recognizing Virology gene therapy genetic error human cell

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>