Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria don’t always work ‘just in time’

23.09.2013
Scientists of the University Jena and the TU Ilmenau calculate optimal metabolic pathways in bacteria

‘Just in time’ – not only cars are being built according to this principle nowadays. Aircraft, mobile phones and computers are also produced following this method, in which all components are delivered exactly at the time when they are needed. This saves storage capacity and therefore cash. Hence it is supposed to be particularly efficient.

In nature – the byword for efficiency – production processes are also following the ‘just-in-time-principle’ as well – at least according to the scientific consensus until now. “Living beings just can’t afford to produce more substances than necessary. Only what is really necessary will be provided,” Prof. Dr. Christoph Kaleta of the Friedrich Schiller University Jena (Germany) says. In a project supported by the German Research Foundation, the Bioinformatician and his team wanted to find out how organisms succeed in producing exactly the right amount of protein that they need to be optimally adapted to the prevailing environmental conditions.

In doing so, Kaleta and his colleagues were in for a surprise: According to a report of the Jena scientists and their colleagues of the Ilmenau University of Technology in the Science Magazine ‘Nature Communications’, bacteria like for instance Escherichia coli don’t always work according to the ‘just in time’-principle at all (DOI: 10.1038/ncomms3243). This mode of production is – as in industrial processes too – very efficient, but it would also be risky; if the delivery of only one of the components would fail to materialize, the whole chain might be in danger of failing.

“When the bacterial cell can afford it, it deviates from the successive activation of the enzymes which is necessary for the production of proteins,” Kaleta explains the findings of his study. Depending on the level of demand for a certain protein, the production will be dynamically adapted. “If there is a rather low demand and if the production capacity of the cell is capable, all enzymes will be increased at the same time,” the Junior Professor for Theoretical Systems Biology says. Or, to return to the image of the industrial production of goods: all components are being produced at the same time. Only when the demand for protein is so high that the simultaneous production of all ‘components’ would overstrain the cell, are they being delivered ‘just in time‘.

For their study, the researchers applied methods which are otherwise used for the optimization of industrial processes. “Thereby we could prove that many bacteria indeed use those strategies for the optimal production of proteins which we postulated,” says Kaleta. In this way, technology was for once able to deliver the tools for a better understanding of nature, the 30 year old junior scientist smilingly stresses. “Usually it is the other way around and we often develop technology along the lines of the example of nature.”

Their work, the Jena Bioinformaticians are convinced, is not only interesting fundamental research; one day these findings will be useful in a very practical way. “It is easily conceivable to use it to fight pathogens,” Kaleta says. This is because during a process of infection the pathogens adapt very quickly to the situation in the host organism as well. “When it becomes clear which programme the metabolism of the pathogen is based upon, we can specifically look for points of vantage for new active substances that can stop the growth and proliferation of the pathogen.”

Original Publication:
Bartl M, Kötzing M, Schuster S, Li P, Kaleta C. Dynamic optimization identifies optimal programmes for pathway regulation in prokaryotes (2013), Nature Communications, DOI: 10.1038/ncomms3243
Contact:
Prof. Dr. Christoph Kaleta
Research Group Theoretical Systems Biology
Friedrich Schiller University Jena
Leutragraben 1, D-07743 Jena
Germany
Phone: ++49 3641 949590
Email: christoph.kaleta[at]uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>