Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attacking a rare disease at its source with gene therapy

27.08.2014

Penn proof-of-principle animal study reduces harmful accumulation of proteins in lysosomal storage disease

Treating the rare disease MPS I is a challenge. MPS I, caused by the deficiency of a key enzyme called IDUA, eventually leads to the abnormal accumulation of certain molecules and cell death.

The two main treatments for MPS I are bone marrow transplantation and intravenous enzyme replacement therapy, but these are only marginally effective or clinically impractical, especially when the disease strikes the central nervous system (CNS). Using an animal model, a team from the Perelman School of Medicine at the University of Pennsylvania has proven the efficacy of a more elegant way to restore IDUA levels in the body through direct gene transfer. Their work was published this week online in Molecular Therapy.

"The study provides a strong proof-of-principle for the efficacy and practicality of intrathecal delivery of gene therapy for MPS patients," said lead author James M. Wilson, MD, PhD, professor of Pathology and Laboratory Medicine and director of the Penn Gene Therapy Program. "This first demonstration will pave the way for gene therapies to be translated into the clinic for lysosomal storage diseases."

... more about:
»Attacking »CNS »CSF »Health »MPS »Medicine »Wilson »blood »diseases »enzyme »vector

This family of diseases comprises about 50 rare inherited disorders marked by defects in the lysosomes, compartments within cells filled with enzymes to digest large molecules. If one of these enzymes is mutated, molecules that would normally be degraded by the lysosome accumulate within the cell and their fragments are not recycled. Many of the MPS disorders can share symptoms, such as speech and hearing problems, hernias, and heart problems. Patient groups estimate that in the United States 1 in 25,000 births will result in some form of MPS. Life expectancy varies significantly for people with MPS I. Individuals with the most severe form rarely live more than 10 years.

The team used an adeno-associated viral (AAV) vector to introduce normal IDUA to glial and neuronal cells of the brain and spinal cord in a feline model. Their aim was to treat the CNS manifestations of MPS at the source. After a single injection of the AAV9 vector expressing a normal feline IDUA gene sequence and various promoters, the investigators collected blood serum and cerebrospinal fluid (CSF) samples from the test animals and from untreated controls

Some of the treated animals displayed a sharp decline in IDUA levels in the CSF after an initial elevation in the enzyme, which the researchers attribute to an antibody response against IDUA. However, IDUA still persisted at a level sufficient to elicit a positive therapeutic response.

The team also found that one CSF enzyme was elevated in the presence of MPS and propose it could be used as a biomarker for disease activity. All the treated animals displayed a marked decrease in this enzyme, confirming a definite biochemical response to the introduction of the gene vector.

Tissue samples from the brain and spinal cord showed widespread presence of the AAV9 vector throughout all regions of the CNS. IDUA deficiency in the CNS caused by MPS1 results in the accumulation of cholesterol and lipids called gangliosides in brain tissue and accumulation of the sugar glycosaminoglycan in connective tissue and cerebral blood vessels. The animals treated with the AAV9-IDUA vector displayed an almost complete reversal of these molecular markers of MPS.

"Signs of MPS were also virtually completely corrected in the liver and spleen," notes Wilson.

Even with a possible antibody response, conclude the researchers, a single injection nearly reversed all evidence of MPS pathology in the CNS of the treated animals. Next steps could include possible human trials and the expansion of this therapeutic approach to other lysosomal diseases that attack CNS cells.

###

Co-authors also included Mark E. Haskins from Penn School of Veterinary Medicine. This work was funded by NIH grants P40-OD010939 and DK25759 and ReGenX BioSciences, LLC, a Washington, D.C.-based biotech firm that holds licenses in technology used in this study.

Editor's Note:

J.M. Wilson is an advisor to ReGenX Biosciences and Dimension Therapeutics , and is a founder of, holds equity in, and receives grants from ReGenX Biosciences and Dimension Therapeutics; in addition, he is a founder, consultant and advisor to several other biopharmaceutical companies and is an inventor on patents licensed to various biopharmaceutical companies.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2013 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2013, Penn Medicine provided $814 million to benefit our community.

Karen Kreeger | Eurek Alert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Attacking CNS CSF Health MPS Medicine Wilson blood diseases enzyme vector

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>