Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arsenic for better drugs and cleaner crops

Research carried out at the University of Gothenburg may lead to more effective arsenic-containing drugs. The results may also lead to more resistant plants, and crops with a limited absorption and storage of arsenic.

Even though arsenic is toxic for many organs in the human body, it is used in the treatment of some forms of cancer, and it is an active component of drugs against parasitic diseases.

Healing arsenic

Arsenic is used in therapeutic medicine, but we know relatively little about the mechanisms by which cells develop resistance to arsenic, which may lead to a lower therapeutic effect.

Proteins control cellular processes

Scientist Doryaneh Ahmadpour at the Department of Chemistry and Molecular Biology, University of Gothenburg, has carried out experiments with common baker’s yeast, in order to find out how inflow and outflow take place in cells.

“The knowledge we obtain from determining these mechanisms in yeast can be subsequently used in the long term to produce more effective drugs containing arsenic. A membrane protein known as Fps1 is particularly interesting. This protein transports the trivalent form of arsenic (arsenite) into and out from the cell,” says Doryaneh Ahmadpour.

She has worked with scientist Michael Thorsen to show how the Fps1 protein is regulated and how the inflow into the cell of arsenic is influenced by another protein, Hog1.

The results suggest that a reduction in the activity of Hog1 is an effective way of increasing the ability of the cell to absorb arsenic. This may make the cell more sensitive to arsenic and thus give more effective treatment.

Resistance to arsenic can be increased in a similar manner, by increasing the activity of Hog1, which reduces the inflow of arsenic into the cells.

“We have shown also that a protein known as Slt2 regulates the outflow of arsenic from the cell, and increases the resistance of the cell to arsenic. It is possible, in the same way, to regulate the cellular resistance against arsenic by controlling the activity of Slt2.”

Arsenic as a problem

Arsenic is a toxic metalloid that is naturally found in earth crust. It can be leached out by water or spread by industrial activity.

Arsenic is a global problem due to the increasing contamination of water, soil and crops, not only in the industrialized world but also in developing countries.

“High levels of arsenic in groundwater can lead to humans being exposed to toxic levels in food and water. This affects mainly people in regions in which the crops are watered with arsenic-contaminated water, leading to arsenic being stored in the plants.”

Resistant crops

Increased knowledge about arsenic can be used to produce plants with a high absorption, and these can be used to clean contaminated land. The knowledge can also be used to produce food crops, known as “safe crops”, with a limited absorption and storage of arsenic.

The thesis has been successfully defended.

For more information, please contact: Doryaneh Ahmadpour, Department of Chemistry and Molecular Biology, University of Gothenburg
Mobile: +46 73 766 6028

Helena Aaberg | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>