Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arizona Sate University scientists take steps to unlock the secrets to the fountain of youth

05.05.2014

ASU scientists, together with collaborators from the Chinese Academy of Sciences in Shanghai, have published today, in Nature Structural and Molecular Biology, a first of its kind atomic level look at the enzyme telomerase that may unlock the secrets to the fountain of youth.

Telomeres and the enzyme telomerase have been in the medical news a lot recently due to their connection with aging and cancer. Telomeres are found at the ends of our chromosomes and are stretches of DNA which protect our genetic data, make it possible for cells to divide, and hold some secrets as to how we age –and also how we get cancer.

Enzyme Telomerase Complex

This image depicts telomeres on a chromosome and shows the different components required for telomerase activity as researched by professor Julian Chen of Arizona State University and published on 05/04/14 in Nature Structural and Molecular Biology.

Credit: Joshua Podlevsky

An analogy can be drawn between telomeres at the end of chromosomes and the plastic tips on shoelaces: the telomeres keep chromosome ends from fraying and sticking to each other, which would destroy or scramble our genetic information.

Each time one of our cells divides its telomeres get shorter. When they get too short, the cell can no longer divide and it becomes inactive or dies. This shortening process is associated with aging, cancer and a higher risk of death. The initial telomere lengths may differ between individuals. Clearly, size matters!

"Telomerase is crucial for telomere maintenance and genome integrity," explains Julian Chen, professor of chemistry and biochemistry at ASU and one of the project's senior authors. "Mutations that disrupt telomerase function have been linked to numerous human diseases that arise from telomere shortening and genome instability."

Chen continues that, "Despite the strong medical applications, the mechanism for telomerase holoenzyme (the most important unit of the telomerase complex) assembly remains poorly understood. We are particularly excited about this research because it provides, for the first time, an atomic level description of the protein-RNA interaction in the vertebrate telomerase complex."

###

The other senior author on the project is professor Ming Lei who has recently relocated from the University of Michigan to Shanghai, China to lead a new National Center for Protein Science (affiliated with the Chinese Academy of Sciences).

The Department of Chemistry and Biochemistry at ASU, in the College of Liberal Arts and Sciences, ranks 6th worldwide for research impact (gauged by the average cites per paper across the department for the decade ending in the 2011 International Year of Chemistry) and in the top eight nationally for research publications in Science and Nature. The department's strong record in interdisciplinary research is also evidenced by its 31st national ranking by the NSF in total and federally financed higher education R&D expenditures in chemistry.

This work was supported by grants from the US National Institutes of Health (RO1GM094450 to J.J.-L.C.), Ministry of Science and Technology of China (2013CB910400 to M.L.), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08010201 to M.L.).

Jenny Green | Arizona State University
Further information:
http://www.asu.edu

Further reports about: ASU Arizona DNA Science chromosomes diseases enzyme function plastic steps telomerase complex telomeres

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>