Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arizona Sate University scientists take steps to unlock the secrets to the fountain of youth

05.05.2014

ASU scientists, together with collaborators from the Chinese Academy of Sciences in Shanghai, have published today, in Nature Structural and Molecular Biology, a first of its kind atomic level look at the enzyme telomerase that may unlock the secrets to the fountain of youth.

Telomeres and the enzyme telomerase have been in the medical news a lot recently due to their connection with aging and cancer. Telomeres are found at the ends of our chromosomes and are stretches of DNA which protect our genetic data, make it possible for cells to divide, and hold some secrets as to how we age –and also how we get cancer.

Enzyme Telomerase Complex

This image depicts telomeres on a chromosome and shows the different components required for telomerase activity as researched by professor Julian Chen of Arizona State University and published on 05/04/14 in Nature Structural and Molecular Biology.

Credit: Joshua Podlevsky

An analogy can be drawn between telomeres at the end of chromosomes and the plastic tips on shoelaces: the telomeres keep chromosome ends from fraying and sticking to each other, which would destroy or scramble our genetic information.

Each time one of our cells divides its telomeres get shorter. When they get too short, the cell can no longer divide and it becomes inactive or dies. This shortening process is associated with aging, cancer and a higher risk of death. The initial telomere lengths may differ between individuals. Clearly, size matters!

"Telomerase is crucial for telomere maintenance and genome integrity," explains Julian Chen, professor of chemistry and biochemistry at ASU and one of the project's senior authors. "Mutations that disrupt telomerase function have been linked to numerous human diseases that arise from telomere shortening and genome instability."

Chen continues that, "Despite the strong medical applications, the mechanism for telomerase holoenzyme (the most important unit of the telomerase complex) assembly remains poorly understood. We are particularly excited about this research because it provides, for the first time, an atomic level description of the protein-RNA interaction in the vertebrate telomerase complex."

###

The other senior author on the project is professor Ming Lei who has recently relocated from the University of Michigan to Shanghai, China to lead a new National Center for Protein Science (affiliated with the Chinese Academy of Sciences).

The Department of Chemistry and Biochemistry at ASU, in the College of Liberal Arts and Sciences, ranks 6th worldwide for research impact (gauged by the average cites per paper across the department for the decade ending in the 2011 International Year of Chemistry) and in the top eight nationally for research publications in Science and Nature. The department's strong record in interdisciplinary research is also evidenced by its 31st national ranking by the NSF in total and federally financed higher education R&D expenditures in chemistry.

This work was supported by grants from the US National Institutes of Health (RO1GM094450 to J.J.-L.C.), Ministry of Science and Technology of China (2013CB910400 to M.L.), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08010201 to M.L.).

Jenny Green | Arizona State University
Further information:
http://www.asu.edu

Further reports about: ASU Arizona DNA Science chromosomes diseases enzyme function plastic steps telomerase complex telomeres

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>