Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants farm root aphid clones in subterranean rooms

02.07.2012
The yellow meadow ant, Lasius flavus, farms root aphids for sugar (honeydew) and nitrogen (protein).

In turn these species of aphids have developed distinctive traits never found in free living species such as the 'trophobiotic organ' to hold honey dew for the ants. New research published in BioMed Central's open access journal BMC Evolutionary Biology shows that over half of ant mounds contained only one of the three most common species of aphid, and two thirds of these has a single aphid clone. Even in mounds which contained more than one species of aphid 95% of the aphid chambers contained individuals of a single clone.


The yellow meadow ant, Lasius flavus, farms root aphids for sugar (honeydew) and nitrogen (protein). Credit: Aniek Ivens

Aphid farming by ants is considered to be mutualistic. The ants cultivate and protect the aphids which in turn provide food for the ants. In farming mutualism, monocultures may reduce competition and are perhaps the result of husbandry (caused by the ants selecting the best aphids for their needs).

Researchers from the University of Copenhagen, University of Groningen and Rockefeller University used DNA microsatellite analysis to look at the genetic similarity of the three most common species of root aphids (Geoica utricularia, Tetraneura ulmi, and Forda marginata) within L. flavus nests, soil samples within nests, and single aphid chambers.

Results indicated that while there was considerable aphid diversity within the 7 km test site at all sampling levels (ant mound, soil sample and chamber), monocultures occurred more frequently than expected. 52% of mounds and 99% of aphid chambers contained a single species and 60% of these contained a single clone. When multiple species or clones existed in the same mound they were kept separated.

Aniek Ivens, who led this research, explained, "Although two years later most ant mounds seemed to contain the same clones, two mounds had gained new clones of their species. It is possible that either these aphids have been brought in or that they were previously at a very low level in the mound and missed during an earlier survey."

The combination of underground nesting, aphid clones, and very low gene flow between aphid populations has allowed L. flavus to evolve an unusual form of symbiosis. Miss Ivens continued, "In a parallel with human farming methods this most likely gives colonies the possibility to actively manage the diversity and abundance of their livestock - allowing maximal honeydew yield from mature aphids that are kept under optimal conditions of phloem feeding and ant care. Ants also secure dietary protein by eating the excess of young aphids, and replacement of their honeydew-producing livestock when adult aphids become less productive."

1. Ants farm subterranean aphids mostly in clone groups: an example of prudent husbandry for carbohydrates and proteins?
Aniek BF Ivens, Daniel JC Kronauer, Ido Pen, Franz J Weissing and Jacobus J Boomsma

BMC Evolutionary Biology (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Evolutionary Biology is an open access, peer-reviewed journal that considers articles on all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>