Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antibiotics: Change route of delivery to mitigate resistance

New research suggests that the rapid rise of antibiotic resistance correlates with oral ingestion of antibiotics, raising the possibility that other routes of administration could reduce the spread of resistance. The manuscript appears online ahead of print in the journal Antimicrobial Agents and Chemotherapy.

"For more than 40 years, a few doses of penicillin were enough to take care of deadly bacterial infections," says Hua Wang of the Ohio State University, Columbus, a researcher on the study. But since the 1980s, antibiotic resistance has been spreading rapidly, disabling once-powerful agents, leaving increasing numbers of patients to suffer, and even to die.

In earlier research, the investigators found a large cache of antibiotic resistance genes carried by nonpathogenic bacteria in many ready-to-consume food items. They also reported rapid development of resistant bacteria in infants who had not been exposed to antibiotics, shortly after birth, suggesting the gastrointestinal tract played a critical role in spreading resistance.

In the new research, the researchers inoculated lab mice with either Enterococcus species or Escherichia coli carrying specific resistance genes. The mice were then given tetracycline or ampicillin antibiotics, either orally, or via injection. Oral administration of antibiotics resulted in rapid rise of resistance genes as measured in the mice' feces. Resistance spread much less, and more slowly when the mice received antibiotics via injection.

The researchers also found that antibiotic resistance genes were not detectable in mice that had not been inoculated with bacteria containing antibiotic resistance genes, regardless of the route of antibiotic administration.

The human death toll from resistance, Wang says, is much higher than the 90,000 figure provided by the Centers for Disease Control and Prevention. The difference is due to the fact that bacterial infection is often the direct cause of death in many patients with chronic diseases, such as HIV/AIDS and cancer.

Besides resistance, recent work has shown that the use of oral antibiotics can reduce the diversity of the gut flora. Abnormalities of the gut flora are associated with multiple non-infectious diseases, including several autoimmune diseases and type II diabetes, according to Jeremy Nicholson of Imperial College, London, UK. Thus, alternatives to oral administration could likely mitigate these kinds of problems, as well.

Convenient alternatives to oral antibiotics might include transdermal administration via a patch, or other devices, says Wang.

Wang suggests that it should not be surprising that oral administration would abet the spread of resistance genes, since this route, unlike injection, directly exposes the humongous population of gastrointestinal bacteria to antibiotics. The resulting resistant microbes then get transmitted to the environment via the feces. From there, bacteria containing resistance genes once again gain entry to the food supply, via livestock, or via produce that has been exposed to manure from industrial livestock, as well as contaminated waste and soil, in a vicious cycle.

"Revealing this key risk factor is exciting because we have options other than oral administration, including convenient ones, for giving antibiotics," says Wang.

A copy of the manuscript can be found online at The paper is scheduled to be formally published in the August 2013 Antimicrobial Agents and Chemotherapy.

Antimicrobial Agents and Chemotherapy is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>