Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotics: Change route of delivery to mitigate resistance

27.06.2013
New research suggests that the rapid rise of antibiotic resistance correlates with oral ingestion of antibiotics, raising the possibility that other routes of administration could reduce the spread of resistance. The manuscript appears online ahead of print in the journal Antimicrobial Agents and Chemotherapy.

"For more than 40 years, a few doses of penicillin were enough to take care of deadly bacterial infections," says Hua Wang of the Ohio State University, Columbus, a researcher on the study. But since the 1980s, antibiotic resistance has been spreading rapidly, disabling once-powerful agents, leaving increasing numbers of patients to suffer, and even to die.

In earlier research, the investigators found a large cache of antibiotic resistance genes carried by nonpathogenic bacteria in many ready-to-consume food items. They also reported rapid development of resistant bacteria in infants who had not been exposed to antibiotics, shortly after birth, suggesting the gastrointestinal tract played a critical role in spreading resistance.

In the new research, the researchers inoculated lab mice with either Enterococcus species or Escherichia coli carrying specific resistance genes. The mice were then given tetracycline or ampicillin antibiotics, either orally, or via injection. Oral administration of antibiotics resulted in rapid rise of resistance genes as measured in the mice' feces. Resistance spread much less, and more slowly when the mice received antibiotics via injection.

The researchers also found that antibiotic resistance genes were not detectable in mice that had not been inoculated with bacteria containing antibiotic resistance genes, regardless of the route of antibiotic administration.

The human death toll from resistance, Wang says, is much higher than the 90,000 figure provided by the Centers for Disease Control and Prevention. The difference is due to the fact that bacterial infection is often the direct cause of death in many patients with chronic diseases, such as HIV/AIDS and cancer.

Besides resistance, recent work has shown that the use of oral antibiotics can reduce the diversity of the gut flora. Abnormalities of the gut flora are associated with multiple non-infectious diseases, including several autoimmune diseases and type II diabetes, according to Jeremy Nicholson of Imperial College, London, UK. Thus, alternatives to oral administration could likely mitigate these kinds of problems, as well.

Convenient alternatives to oral antibiotics might include transdermal administration via a patch, or other devices, says Wang.

Wang suggests that it should not be surprising that oral administration would abet the spread of resistance genes, since this route, unlike injection, directly exposes the humongous population of gastrointestinal bacteria to antibiotics. The resulting resistant microbes then get transmitted to the environment via the feces. From there, bacteria containing resistance genes once again gain entry to the food supply, via livestock, or via produce that has been exposed to manure from industrial livestock, as well as contaminated waste and soil, in a vicious cycle.

"Revealing this key risk factor is exciting because we have options other than oral administration, including convenient ones, for giving antibiotics," says Wang.

A copy of the manuscript can be found online at http://bit.ly/asmtip0613c. The paper is scheduled to be formally published in the August 2013 Antimicrobial Agents and Chemotherapy.

Antimicrobial Agents and Chemotherapy is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>