Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An answer to a longstanding question: How HIV infection kills T cells

25.11.2010
Researchers appear to have an explanation for a longstanding question in HIV biology: how it is that the virus kills so many CD4 T cells, despite the fact that most of them appear to be "bystander" cells that are themselves not productively infected. That loss of CD4 T cells marks the progression from HIV infection to full-blown AIDS, explain the researchers who report their findings in studies of human tonsils and spleens in the November 24th issue of Cell, a Cell Press publication.

"In [infected] primary human tonsils and spleens, there is a profound depletion of CD4 T cells," said Warner Greene of The Gladstone institute for Virology and Immunology in San Francisco. "In tonsils, only one to five percent of those cells are directly infected, yet 99 percent of them die."

Lymphoid tissues, including tonsils and spleen, contain the vast majority of the body's CD4 T cells and represent the major site where HIV reproduces itself. And it now appears that those dying T cells aren't bystanders exactly.

The HIV virus apparently does invade those T cells, but the cells somehow block virus replication. It is the byproducts of that aborted infection that trigger an immune response that is ultimately responsible for killing those cells.

More specifically, when the virus enters the CD4 T cells that will later die, it begins to copy its RNA into DNA, Greene and his colleague Gilad Doitsh explain. That process, called reverse transcription, is what normally allows a virus to hijack the machinery of its host cell and begin replicating itself. But in the majority of those cells, the new findings show that the process doesn't come to completion.

The cells sense partial DNA transcripts as they accumulate and, in a misguided attempt to protect the body, commit a form of suicide. Greene says that completed viral transcripts in cells that are productively infected probably don't provoke the same reaction because they are so rapidly shuttled into the nucleus and integrated into the host's own DNA.

The researchers narrowed down the precise "death window" of those so-called bystander cells by taking advantage of an array of HIV drugs that act at different points in the viral life cycle. Drugs that blocked viral entry or that prevented reverse transcription altogether stopped the CD4 T cell killing, they report. Those drugs that act later in the life cycle to prevent reverse transcription only after it has already begun did not save the cells from their death.

Those cells don't die quietly either, Greene says. The cells produce ingredients that are the hallmarks of inflammation and break open, spilling all of their contents. That may provide a missing link between HIV and the inflammation that tends to go with it.

"That inflammation will attract more cells leading to more infection," Greene said. "It's a vicious cycle."

The findings also show that the CD4 T cells' demise is a response designed to be protective of the host. All that goes awry in the case of HIV and "the CD4 T cells just get blown away," compromising the immune system.

Greene said that all the available varieties of anti-HIV drugs will still work to fight the infection by preventing the virus from spreading and reducing the viral load.

The findings may lead to some new treatment strategies, however. For instance, it may be possible to develop drugs that would act on the cell sensor that triggers the immune response, helping to prevent the loss of CD 4 T cells. His team plans to explore the identity of that sensor in further studies. They also are interested to find out if the virus has strategies in place to try and prevent the CD4 T cells' death.

"The cell death pathway is really not in the virus's best interest," Greene says. "It precludes the virus from replicating and the virus may have ways to repel it."

Elisabeth Lyons | EurekAlert!
Further information:
http://www.cell.com

Further reports about: CD4+ T cells CD4-Rezeptor DNA Greene HIV T cells anti-HIV drug cell death immune response life cycle

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>