Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient cycads found to be pre-adapted to grow in groves

21.08.2013
A result of being dispersed in clumps by extinct large-bodied animal dispersers?

The ancient cycad lineage has been around since before the age of the dinosaurs. More recently, cycads also co-existed with large herbivorous mammals, such as the ice age megafauna that only went extinct a few tens of thousands of years ago.


The biotic soil crust in Red Rock Canyon, Lake Mead National Recreation Area, NV is showing clumps of the dominant moss species, Syntrichia caninervis. Each black dot represents a separate plant. This extreme arid-dwelling moss inhabits the loose sandy soils of the Mojave Desert. The peculiar characteristic about this dioecious species is that it often does not develop sex organs if temperatures are too high and moisture is too low. These clumps, which should have a 50/50 ratio of females to males, are sexless. However, the female phenotype is heartier and when sex organs do develop they are usually female. Delving into the population impacts of lack of sex organ development and skewed sex ratios in S. caninervis, Paasch et al. assessed the standing genetic diversity of this species at four sites in the Mojave Desert. What they found was surprising. This sexually stunted species is maintaining a high number of genotypes and high genetic diversity, even under stressful environmental conditions and at sites with a complete lack of sexually developed individuals.
Image credit: Alexis Wartelle

Cycads that are living today have large, heavy seeds with a fleshy outer coating that suggests they rely on large bodied fruit-eating animals to disperse their seeds. Yet there is little evidence that they are eaten and dispersed by today's larger-bodied animals, such as emus or elephants. If these plants are adapted for dispersal by a set of animals that has been missing from Earth's fauna for tens of thousands of years, then how can they still be around today? A new study proposes that the clumped dispersal mechanism these ancient plants most likely relied upon still serves them well today.

Fossil cycads are recorded from 280 million years ago around the time coniferous forests first arose. The ecological distribution pattern of many living cycads today suggests they have limited and ineffectual seed dispersal. For example, Macrozamia miquelii, a cycad endemic to Australia, is found in highly clumped, dense, numbers, where it dominates the understory. Moreover, large areas of seemingly suitable habitat often separate populations from each other. These patterns suggest that few to none of the seeds are being dispersed large distances away from parent plants, one of the long-standing tenets of the advantages of seed dispersal.

John Hall and Gimme Walter (University of Queensland, Australia) were interested in determining whether the seed dispersal and seedling distribution pattern of M. miquelii might indicate that it is maladapted to its current dispersers. They proposed a new twist on the functional significance of the megafaunal dispersal syndrome and published their findings recently in the American Journal of Botany.

"Naturalists are very comfortable with the idea of animals gaining a biological advantage by choosing to live together in high density 'colonies'—such as ant nests or seabird rookeries—in certain parts of the landscape," notes Hall. "But when it comes to plants, there is a bit of a subconscious assumption that the purpose of seed dispersal is to simply spread seeds as far and as evenly as possible across the broadest possible area."

Hall and Walter decided to investigate whether cycads might be a type of plant that forms such colonies. "The main idea behind our research," Hall clarifies, "is to ask the question: when it comes to the spatial ecology of plants, could it be useful to think of some plant species as also forming and maintaining 'colonies' or 'groves' in the wider landscape?"

"Australian cycads once co-existed with megafauna that could have dispersed their large, heavy seeds—such as giant ground birds, bigger then present day emus, and Diprotodon, a rhino sized marsupial quadruped," explains Hall. "The large, heavy and poisonous seeds, surrounded by a fleshy and non-toxic fruit-like layer, seem well adapted to being occasionally swallowed whole en masse by megafauna, which would then pass the many seeds simultaneously at a new location: the genesis of a new grove."

Female cycads produce one to two cones that contain multiple, large seeds, each covered with a thin outer fleshy sarcotesta. By tagging ten large seeds from the single cone of 12 plants with a small steel bolt, the authors were able to track how many of the seeds were removed from the parent cycad and how far the seeds were dispersed.

They found that within three months virtually all of the seeds had their sarcostesta eaten—primarily by brushtailed opposums, which scrape the flesh off and discard the large seeds. Camera traps at two fruiting females and hair traps baited with seeds confirmed the disperser identity. However, almost all (97%) of the tagged seeds that the authors recovered had been moved less than one meter away; only a few were moved beyond the vicinity of the parent plant and in all cases they were found less than 5 meters away.

Moreover, although most of the seeds ended up under the parent cycad, almost no seedlings were found within a 1.5 m radius of adult cycads, suggesting that most seeds within the vicinity of the parent perish.

These patterns suggest that despite their large seed size, the primary dispersers of these cycads today are smaller bodied animals; these animals do not spread the seeds far and wide, nor take them to potentially new colonizable habitats. Yet, these plants seem to be doing well by sprouting up near the adults and forming mono-dominant stands.

"Since their potential Australian prehistoric megafaunal dispersers became extinct around 45,000 years ago, why haven't Australian cycads begun to evolve smaller seeds, that would be more readily dispersed by flying birds or possums for example, over the interim?" posits Hall.

"We argue that the answer to this question is that cycads are actually disadvantaged by dispersing as lone individuals that may travel long distances, but in so doing so, become isolated from others of their kind," Hall states.

Moreover, Hall points out that cycad plants are all born either male or female, and rely completely on host specific insect pollinators—so a lone cycad that dispersed a long way from others of its kind would probably be disadvantaged rather than advantaged in terms of reproduction.

Thus, if cycads evolved to be dispersed by large-bodied frugivores, these animals would most likely have deposited many cycads seeds in their dung at once, and thus these plants may be adapted to grow in groves—an aspect that plays to their favor today, despite the loss of these megafauna dispersers.

"There's no doubt that cycad ancestors were contemporary with herbivorous dinosaurs for many hundreds of millions of years, so it's plausible that cycad seed dispersal ecology and "colony forming" behavior may be extremely ancient, and echo the ecology of dinosaur-plant interaction" he concludes, "but of course we now enter into the realm of speculation."

Hall's interest in the spatial ecology of 'colony' forming plants does not stop at cycads; he is currently planning to explore these ideas in other plants and landscapes, especially in forest understories.

John A. Hall and Gimme H. Walter. 2013. Seed dispersal of the Australian cycad Macrozamia miquelii (Zamiaceae): Are cycads megafauna-dispersed "grove forming" plants? American Journal of Botany 100(6): 1127-1136. DOI: 10.3732/ajb.1200115

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/100/6/1127.full.pdf+html. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>