Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ADAM-12 gene could hold key to cancer, arthritis and cardiac treatments

09.03.2011
ADAM-12 is not only the name of a 1970's television police drama – it's also the gene that University of Missouri researchers believe could be an important element in the fight against cancer, arthritis, and cardiac hypertrophy, or thickening of the heart's walls.

Alpana Ray, research associate professor in the MU College of Veterinary Medicine, and a team of researchers including Bimal Ray, professor of Veterinary Pathobiology, have been studying the ADAM family of genes for several years. Alpana Ray's latest publication in the Proceedings of the National Academy of Sciences (PNAS) discusses one pathway by which the ADAM-12 gene could be regulated, a process that could eventually be used as part of a treatment plan.

Scientists know that ADAM-12 is normally found in very low levels in adults, but during cancer, arthritis and cardiac hypertrophy, ADAM-12 level goes up. The only time it is normal to find a high level of the gene is during pregnancy, when ADAM-12 can be found in the placenta.

At the molecular level, Ray's team found a Z-DNA-binding silencer element that keeps the level of ADAM-12 low in normal conditions. They believe that if they could alter Z-DNA-binding silencer, new therapies could be right around the corner.

"We are finding that in the placenta, where ADAM-12 is highly expressed, the repressor protein (Z-DNA-binding protein) is inactive. In other tissues, where ADAM-12 expression is low, the repressor is active," Alpana Ray said. "What we don't know is how it actually works. We know co-factors are at work here. If we can identify the class of proteins that interact with Z-DNA repressor, it could lead to many therapeutic applications."

Because ADAM-12 is a versatile gene, it may play a role in metastasis during which cancer cells travel throughout the body and spread to other organs.

"We know that ADAM-12 causes cells to anchor to one another, and we know that ADAM-12 allows cancer cells to proliferate," said Alpana Ray.

Bimal Ray notes that the next phase of the work would be to determine how the Z-DNA-binding protein works.

"Most of the success in cancer therapy lies in a combination of approaches and chemotherapies, and this could become another piece of the puzzle that leads to the cure," Bimal Ray said.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>