Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activated stem cells in damaged lungs could be first step toward cancer

28.05.2009
Stem cells that respond after a severe injury in the lungs of mice may be a source of rapidly dividing cells that lead to lung cancer, according to a team of American and British researchers.

"There are chemically resistant, local-tissue stem cells in the lung that only activate after severe injury," said Barry R. Stripp, Ph.D., professor of medicine and cell biology at Duke University Medical Center.

"Cigarette smoke contains a host of toxic chemicals, and smoking is one factor that we anticipate would stimulate these stem cells. Our findings demonstrate that, with severe injury, the resulting repair response leads to large numbers of proliferating cells that are derived from these rare stem cells."

Stripp said this finding could be related to the increased incidence of lung cancer in people with chronic disease states, in particular among cigarette smokers.

The findings were published in the advance online edition of the Proceedings of the National Academy of Sciences during the week of May 25.

"On the positive side, I think that it might be possible to improve lung function in the context of disease if we could understand which pathways regulate lung stem cell activation and then target these pharmacologically," said lead author Adam Giangreco, Ph.D., from Cancer Research UK's Cambridge Research Institute. "In terms of lung cancer susceptibility, however, our observation that stem cell activation leads to clonal expansion after injury could, in the context of additional mutations, promote the development of cancerous or precancerous lesions from activated stem cells."

The scientists used a chimeric mouse model, part wild-type and part with green fluorescent protein-tagged cells (GFP), so that the behavior of different populations of duplicating lung cells could be evaluated with high-resolution imaging methods. By understanding the extent to which GFP-positive and GFP-negative cells were mixed, the investigators were able to show that the abundant population of progenitor cells that normally maintain the epithelial layer in the lung could be rapidly wiped out with a strong chemical, naphthalene. Then the rare proliferative cells became active and grew into large patches.

The researchers at Duke and Cancer Research UK used a unique whole-lung imaging method to examine and identify the location of stem cells in the lung tissue of mice, and determine the role they play in both healthy and damaged mouse lungs.

They found that, while the stem cells don't appear to be involved in the normal maintenance of healthy or moderately injured lungs, they do play a vital role in repairing severely damaged lungs.

Even though this repair mechanism is important for restoring lung function, it can come at a price. An acquired mutation in that rare cell or its descendants leads to clonal patches of many identical cells. Secondary mutations in any one of these cells may provide the signals needed for unregulated cell growth and tumor progression.

"This work provides a plausible mechanism to account for this type of event that we previously didn't have," Stripp said.

The study was supported by grant funding from the National Institutes of Health, Cancer Research UK, the University of Cambridge and Hutchison Whampoa.

Other authors include Joshua Snyder from the Duke Department of Medicine; Esther Arwet and Fiona Watt of Cancer Research UK's Cambridge Research Institute; and Ian Rosewell with Cancer Research UK at the London Research Institute in South Mimms. Dr. Watt is also with the Wellcome Trust Centre for Stem Cell Research at Cambridge University.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>