Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activated stem cells in damaged lungs could be first step toward cancer

28.05.2009
Stem cells that respond after a severe injury in the lungs of mice may be a source of rapidly dividing cells that lead to lung cancer, according to a team of American and British researchers.

"There are chemically resistant, local-tissue stem cells in the lung that only activate after severe injury," said Barry R. Stripp, Ph.D., professor of medicine and cell biology at Duke University Medical Center.

"Cigarette smoke contains a host of toxic chemicals, and smoking is one factor that we anticipate would stimulate these stem cells. Our findings demonstrate that, with severe injury, the resulting repair response leads to large numbers of proliferating cells that are derived from these rare stem cells."

Stripp said this finding could be related to the increased incidence of lung cancer in people with chronic disease states, in particular among cigarette smokers.

The findings were published in the advance online edition of the Proceedings of the National Academy of Sciences during the week of May 25.

"On the positive side, I think that it might be possible to improve lung function in the context of disease if we could understand which pathways regulate lung stem cell activation and then target these pharmacologically," said lead author Adam Giangreco, Ph.D., from Cancer Research UK's Cambridge Research Institute. "In terms of lung cancer susceptibility, however, our observation that stem cell activation leads to clonal expansion after injury could, in the context of additional mutations, promote the development of cancerous or precancerous lesions from activated stem cells."

The scientists used a chimeric mouse model, part wild-type and part with green fluorescent protein-tagged cells (GFP), so that the behavior of different populations of duplicating lung cells could be evaluated with high-resolution imaging methods. By understanding the extent to which GFP-positive and GFP-negative cells were mixed, the investigators were able to show that the abundant population of progenitor cells that normally maintain the epithelial layer in the lung could be rapidly wiped out with a strong chemical, naphthalene. Then the rare proliferative cells became active and grew into large patches.

The researchers at Duke and Cancer Research UK used a unique whole-lung imaging method to examine and identify the location of stem cells in the lung tissue of mice, and determine the role they play in both healthy and damaged mouse lungs.

They found that, while the stem cells don't appear to be involved in the normal maintenance of healthy or moderately injured lungs, they do play a vital role in repairing severely damaged lungs.

Even though this repair mechanism is important for restoring lung function, it can come at a price. An acquired mutation in that rare cell or its descendants leads to clonal patches of many identical cells. Secondary mutations in any one of these cells may provide the signals needed for unregulated cell growth and tumor progression.

"This work provides a plausible mechanism to account for this type of event that we previously didn't have," Stripp said.

The study was supported by grant funding from the National Institutes of Health, Cancer Research UK, the University of Cambridge and Hutchison Whampoa.

Other authors include Joshua Snyder from the Duke Department of Medicine; Esther Arwet and Fiona Watt of Cancer Research UK's Cambridge Research Institute; and Ian Rosewell with Cancer Research UK at the London Research Institute in South Mimms. Dr. Watt is also with the Wellcome Trust Centre for Stem Cell Research at Cambridge University.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>