Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activated stem cells in damaged lungs could be first step toward cancer

28.05.2009
Stem cells that respond after a severe injury in the lungs of mice may be a source of rapidly dividing cells that lead to lung cancer, according to a team of American and British researchers.

"There are chemically resistant, local-tissue stem cells in the lung that only activate after severe injury," said Barry R. Stripp, Ph.D., professor of medicine and cell biology at Duke University Medical Center.

"Cigarette smoke contains a host of toxic chemicals, and smoking is one factor that we anticipate would stimulate these stem cells. Our findings demonstrate that, with severe injury, the resulting repair response leads to large numbers of proliferating cells that are derived from these rare stem cells."

Stripp said this finding could be related to the increased incidence of lung cancer in people with chronic disease states, in particular among cigarette smokers.

The findings were published in the advance online edition of the Proceedings of the National Academy of Sciences during the week of May 25.

"On the positive side, I think that it might be possible to improve lung function in the context of disease if we could understand which pathways regulate lung stem cell activation and then target these pharmacologically," said lead author Adam Giangreco, Ph.D., from Cancer Research UK's Cambridge Research Institute. "In terms of lung cancer susceptibility, however, our observation that stem cell activation leads to clonal expansion after injury could, in the context of additional mutations, promote the development of cancerous or precancerous lesions from activated stem cells."

The scientists used a chimeric mouse model, part wild-type and part with green fluorescent protein-tagged cells (GFP), so that the behavior of different populations of duplicating lung cells could be evaluated with high-resolution imaging methods. By understanding the extent to which GFP-positive and GFP-negative cells were mixed, the investigators were able to show that the abundant population of progenitor cells that normally maintain the epithelial layer in the lung could be rapidly wiped out with a strong chemical, naphthalene. Then the rare proliferative cells became active and grew into large patches.

The researchers at Duke and Cancer Research UK used a unique whole-lung imaging method to examine and identify the location of stem cells in the lung tissue of mice, and determine the role they play in both healthy and damaged mouse lungs.

They found that, while the stem cells don't appear to be involved in the normal maintenance of healthy or moderately injured lungs, they do play a vital role in repairing severely damaged lungs.

Even though this repair mechanism is important for restoring lung function, it can come at a price. An acquired mutation in that rare cell or its descendants leads to clonal patches of many identical cells. Secondary mutations in any one of these cells may provide the signals needed for unregulated cell growth and tumor progression.

"This work provides a plausible mechanism to account for this type of event that we previously didn't have," Stripp said.

The study was supported by grant funding from the National Institutes of Health, Cancer Research UK, the University of Cambridge and Hutchison Whampoa.

Other authors include Joshua Snyder from the Duke Department of Medicine; Esther Arwet and Fiona Watt of Cancer Research UK's Cambridge Research Institute; and Ian Rosewell with Cancer Research UK at the London Research Institute in South Mimms. Dr. Watt is also with the Wellcome Trust Centre for Stem Cell Research at Cambridge University.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>