Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In a surprise finding, gene mutation found linked to low-risk bladder cancer

15.10.2013
An international research team led by scientists from Georgetown Lombardi Comprehensive Cancer Center has discovered a genetic mutation linked to low-risk bladder cancer. Their findings are reported online today in Nature Genetics.

The investigators identified STAG2 as one of the most commonly mutated genes in bladder cancer, particularly in tumors that do not spread. The finding suggests that checking the status of the gene may help identify patients who might do unusually well following cancer treatment, says the study's senior investigator, cancer geneticist Todd Waldman, MD, PhD, a professor of oncology at Georgetown Lombardi.

"Most bladder cancers are superficial tumors that have not spread to other parts of the body, and can therefore be easily treated and cured. However, a small fraction of these superficial tumors will recur and metastasize even after treatment," he says.

Because clinicians have been unable to definitively identify those potentially lethal cancers, all bladder cancers patients — after surgery to remove tumors — must undergo frequent endoscopic examinations of their bladder to look for signs of recurrence, says Waldman. This procedure, called cystoscopy, can be uncomfortable and is expensive.

"Our data show that STAG2 is one of the earliest initiating gene mutations in 30-40 percent of superficial or 'papillary-type' bladder tumors, and that these tumors are unlikely to recur," says David Solomon, MD, PhD, a lead author on the study. Solomon is a graduate of the Georgetown MD/PhD program and is currently a pathology resident at the University of California, San Francisco.

"We have developed a simple test for pathologists to easily assess the STAG2 status of these tumors, and are currently performing a larger study to determine if this test should enter routine clinical use for predicting the likelihood that a superficial bladder cancer will recur," Solomon says.

For the study, the researchers examined 2,214 human tumors from virtually all sites of the human body for STAG2 inactivation and found that STAG2 was most commonly inactivated in bladder cancer, the fifth most common human cancer. In follow up work, they found that 36 percent of low risk bladder cancers — those that never invaded the bladder muscle or progressed — had mutated STAG2. That suggests that testing the STAG2 status of the cancer could help guide clinical care, Waldman says. "A positive STAG2 mutation could mean that patient is at lower risk of recurrence."

The researchers also found that 16 percent of the bladder cancers that did spread, or metastasize, had mutated STAG2.

STAG2 mutations have been found in a number of cancers, and this finding in bladder cancer adds new information, he says.

Contributing co-authors include researchers from the University of California, San Francisco; the University of Texas MD Anderson Cancer Center; Weill Cornell College of Medicine; the National Cancer Institute, the National Human Genome Research Institute; Johns Hopkins University School of Medicine; the University of Colorado Cancer Center; Hospital Kassel (Germany); University Hospital Ulm (Germany); Hospital Am Eichert (Germany); and Leiden University Medical Center (Netherlands).

This work was supported by National Institutes of Health grants (R01CA169345, R01CA159467, and R21CA143282), and the MD Anderson Cancer Center Bladder Cancer SPORE grant (P50CA091846).

A provisional patent application has been filed by Georgetown University for the technology described in this paper, on which Waldman, David A. Solomon, and Jung-Sik Kim are the inventors.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis – or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>