Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In a surprise finding, gene mutation found linked to low-risk bladder cancer

15.10.2013
An international research team led by scientists from Georgetown Lombardi Comprehensive Cancer Center has discovered a genetic mutation linked to low-risk bladder cancer. Their findings are reported online today in Nature Genetics.

The investigators identified STAG2 as one of the most commonly mutated genes in bladder cancer, particularly in tumors that do not spread. The finding suggests that checking the status of the gene may help identify patients who might do unusually well following cancer treatment, says the study's senior investigator, cancer geneticist Todd Waldman, MD, PhD, a professor of oncology at Georgetown Lombardi.

"Most bladder cancers are superficial tumors that have not spread to other parts of the body, and can therefore be easily treated and cured. However, a small fraction of these superficial tumors will recur and metastasize even after treatment," he says.

Because clinicians have been unable to definitively identify those potentially lethal cancers, all bladder cancers patients — after surgery to remove tumors — must undergo frequent endoscopic examinations of their bladder to look for signs of recurrence, says Waldman. This procedure, called cystoscopy, can be uncomfortable and is expensive.

"Our data show that STAG2 is one of the earliest initiating gene mutations in 30-40 percent of superficial or 'papillary-type' bladder tumors, and that these tumors are unlikely to recur," says David Solomon, MD, PhD, a lead author on the study. Solomon is a graduate of the Georgetown MD/PhD program and is currently a pathology resident at the University of California, San Francisco.

"We have developed a simple test for pathologists to easily assess the STAG2 status of these tumors, and are currently performing a larger study to determine if this test should enter routine clinical use for predicting the likelihood that a superficial bladder cancer will recur," Solomon says.

For the study, the researchers examined 2,214 human tumors from virtually all sites of the human body for STAG2 inactivation and found that STAG2 was most commonly inactivated in bladder cancer, the fifth most common human cancer. In follow up work, they found that 36 percent of low risk bladder cancers — those that never invaded the bladder muscle or progressed — had mutated STAG2. That suggests that testing the STAG2 status of the cancer could help guide clinical care, Waldman says. "A positive STAG2 mutation could mean that patient is at lower risk of recurrence."

The researchers also found that 16 percent of the bladder cancers that did spread, or metastasize, had mutated STAG2.

STAG2 mutations have been found in a number of cancers, and this finding in bladder cancer adds new information, he says.

Contributing co-authors include researchers from the University of California, San Francisco; the University of Texas MD Anderson Cancer Center; Weill Cornell College of Medicine; the National Cancer Institute, the National Human Genome Research Institute; Johns Hopkins University School of Medicine; the University of Colorado Cancer Center; Hospital Kassel (Germany); University Hospital Ulm (Germany); Hospital Am Eichert (Germany); and Leiden University Medical Center (Netherlands).

This work was supported by National Institutes of Health grants (R01CA169345, R01CA159467, and R21CA143282), and the MD Anderson Cancer Center Bladder Cancer SPORE grant (P50CA091846).

A provisional patent application has been filed by Georgetown University for the technology described in this paper, on which Waldman, David A. Solomon, and Jung-Sik Kim are the inventors.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis – or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>