Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Scientific First: Physicists, physicians, engineers photograph radiation beams in the human body through the Cherenkov effect

24.01.2014
A scientific breakthrough may give the field of radiation oncology new tools to increase the precision and safety of radiation treatment in cancer patients by helping doctors “see” the powerful beams of a linear accelerator as they enter or exit the body.

We don't have X-ray vision. When we have an X-ray or mammogram, we cannot detect the radiation beam that passes through our bone or soft tissue, neither can our doctor. But what if we could see X-rays? When we use powerful X-rays for cancer treatment, we could see how they hit the tumor. If we were off target, we could stop and make adjustments to improve accuracy. Pinpoint precision is important. The goal of radiation is to kill cancer cells without harming healthy tissue.

Safety in Radiation Oncology

As a way to make radiation safer and better, Dartmouth began to investigate a scientific phenomenon called the Cherenkov effect in 2011. Our scientists and engineers theorized that by using Cherenkov emissions the beam of radiation could be "visible" to the treatment team. The ability to capture an X-ray would show:
◾how the radiation signals travel through the body
◾the dose of radiation to the skin
◾any errors in dosage.
TV viewers may have seen images of sunken fuel rods from a nuclear power plant emitting a blue-green glow. That is the Cherenkov effect. When a particle with an electric charge travels faster than the speed of light through something that does not conduct electricity, like the human body or water, it glows. As the matter relaxes from polarization, it emits light. (Yes, for a brief period people glow during radiation.)

The Cherenkov effect in the laboratory

As a first step, engineers at the Thayer School of Engineering at Dartmouth modified a regular camera with a night vision scope to take photos of radiation beams as they passed through water. What appeared on the photos is the Cherenkov effect, a luminescent blue glow. (An engineering student, Adam Glaser, explains how it works in this video.)

To refine the approach for use in radiation treatment, scientists used a mannequin of the human body. They measured and studied the results to refine their ability to capture the luminescence, experimenting with beam size, position, and wavelength.

Cherenkov imaging used for first time in treatment setting

With the clinical aspects refined, Geisel School of Medicine researchers photographed luminescence during the routine radiation treatment of a dog with an oral tumor. (Read "The Power of Small Cures" to learn more about the dog's care.)

This was the first time Cherenkov studies came out of the laboratory and into a treatment setting. The scientists coined the approach Cherenkoscopy. As they anticipated, during the session they were able to see detailed information about the treatment field and the dose. The results were published in the November 2013 issue of the Journal of Biomedical Optics.

"This first observation in the dog proved that we could image a radiation beam during treatment in real time,” said David Gladstone, ScD, chief of Clinical Physics at Norris Cotton Cancer Center. "The images verified the shape of the beam as well as intended motion of the treatment machine."

First image of Cherenkov emissions during treatment of human breast

Now ready to use the technology with a human patient, the team prepared to view radiation as it entered the body of a female breast cancer patient undergoing radiation in July 2013.

"Breast cancer is suited for this because the imaging visualizes the superficial dose of radiation to the skin," said Lesley A. Jarvis, MD, radiation oncologist, Norris Cotton Cancer Center. Skin reactions, similar to sunburn, are a common and bothersome side effect during breast radiation. "By imaging and quantitating the surface dose in a way that has never been done before," said Jarvis, "we hope to learn more about the physical factors contributing to this skin reaction."

By seeing the effect of radiation on the body, radiation oncologists and physicists can make adjustments to avoid side effects to the skin. Most radiation patients undergo somewhere between 8-20 sessions. The Cherenkov images of the breast cancer patient showed a hot spot in her underarm, which physicians and physicists could work to prevent in future sessions.

"The actual images show that we are treating the exact correct location, with the appropriate beam modifications and with the precise dose of radiation," said Jarvis.

Clinical use of Cherenkov emissions proves successful

This trial showed that the Cherenkov effect is feasible for use real-time during radiation. "We have learned the imaging is easy to incorporate into the patient's treatment, adding only minimal time to the treatments," said Jarvis.

"The time needed to acquire this information is negligible, even with our experimental, non-integrated system," said Gladstone. "Cherenkov images were found to contain much richer information than anticipated, specifically, we did not expect to visualize internal blood vessels."

Mapping blood vessels opens up opportunities for radiation oncology to use a person's internal anatomy to confirm precise locations. Skin tattoos on patients determine a preliminary alignment that is verified with X-rays, which show bony anatomy or implanted markers. Cherenkov imaging allow technicians to visualize soft tissue and internal vasculature.

A possible safety net for radiation treatment

By integrating Cherenkov imaging into routine clinical care, Gladstone says the technology could be used to verify that the proper dose is being delivered to patients, helping to avoid misadministration of radiation therapy, a rare, but dangerous occurrence.

Twelve patients are participating in a pilot study, which is almost complete. The research team plans to publish the results in a peer reviewed journal. The Cherenkov effect project team includes Lesley Jarvis, MD, assistant professor of Medicine, Geisel School of Medicine; Brian Pogue, PhD, professor of Engineering, Thayer School, professor of Physics & Astronomy, Dartmouth College, professor of Surgery, Geisel School of Medicine; David J. Gladstone, ScD, DABMP associate professor of Medicine, Geisel School of Medicine; Adam Glaser, engineering student; Rongxiao Zhang, physics student; Whitney Hitchcock, medical school student.

With each trial the team gathers more information on the utility of the approach. "Stay tuned, we are now planning more definitive studies to determine the impact of this new imaging technology to improve safety of radiation," said Jarvis.

The research was supported by a grant from the National Cancer Institute (grant R01CA109558) and NCCC Developmental Funds. To learn more about Norris Cotton Cancer Center's clinical research studies, visit http://cancer.dartmouth.edu/pf/clinical_trial_search.html

Donna Dubuc | EurekAlert!
Further information:
http://www.Dartmouth.edu
http://cancer.dartmouth.edu/focus/Cherenkov_effect_Radiation_Oncology.html

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>