Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At last, a reason why stress causes DNA damage

22.08.2011
For years, researchers have published papers that associate chronic stress with chromosomal damage.

Now researchers at Duke University Medical Center have discovered a mechanism that helps to explain the stress response in terms of DNA damage.

"We believe this paper is the first to propose a specific mechanism through which a hallmark of chronic stress, elevated adrenaline, could eventually cause DNA damage that is detectable," said senior author Robert J. Lefkowitz, M.D., James B. Duke Professor of Medicine and Biochemistry and a Howard Hughes Medical Institute (HHMI) investigator at Duke University Medical Center.

The paper was published in the Aug. 21 online issue of Nature.

In the study, mice were infused with an adrenaline-like compound that works through a receptor called the beta adrenergic receptor that Lefkowitz has studied for many years. The scientists found that this model of chronic stress triggered certain biological pathways that ultimately resulted in accumulation of DNA damage.

"This could give us a plausible explanation of how chronic stress may lead to a variety of human conditions and disorders, which range from merely cosmetic, like graying hair, to life-threatening disorders like malignancies," Lefkowitz said.

P53 is a tumor suppressor protein and is considered a "guardian of the genome" – one that prevents genomic abnormalities.

"The study showed that chronic stress leads to prolonged lowering of p53 levels," said Makoto Hara, Ph.D., a postdoctoral fellow in the Lefkowitz laboratory. "We hypothesize that this is the reason for the chromosomal irregularities we found in these chronically stressed mice."

Lefkowitz earlier had proved the existence of isolated, and characterized the G-protein-coupled receptors (GPCRs) such as the beta adrenergic receptor. These receptors, which are located on the surface of the membranes that surround cells, are the targets of almost half of the drugs on the market today, including beta blockers for heart disease, antihistamines and ulcer medications.

Now he is continuing studies along another pathway,stemming from the GPCRs, that was discovered in his lab, which is known as the beta-arrestin pathway. At first, the theory was that beta-arrestin proteins turned off or desensitized the G-protein pathways, but evidence is accumulating that these proteins are also responsible for causing certain biochemical activities in their own right.

In the current study, the scientists found a molecular mechanism through which adrenaline-like compounds acted through both G-protein and the beta-arrestin pathways to trigger DNA damage.

The Nature publication showed that the infusion of an adrenaline-like compound for four weeks in the mice caused degradation of p53, which was present in lower levels over time.

The study also showed that the DNA damage was prevented in mice lacking beta-arrestin 1. Loss of beta-arrestin 1 stabilized cellular levels of p53 both in the thymus, an organ that strongly responds to acute or chronic stress, and in the testes, where paternal stress might affect an offspring's genome.

Future studies planned by the Lefkowitz laboratory include studying mice that are placed under stress (restrained), thus creating their own adrenaline or stress reaction to learn whether the physical reactions of stress, rather than an influx of adrenaline in the lab as was done in the current study, also leads to accumulation of DNA damage.

Other authors include Jeffrey J. Kovacs, Erin J. Whalen, Sudarshan Rajagopal, Ryan T. Strachan, Seungkirl Ahn, Barbara Williams, Christopher M. Lam, Kunhong Xiao, and Sudha K. Shenoy, all of the Duke Department of Medicine; Aaron J. Towers and Simon G. Gregory of the Department of Medicine and the Center for Human Genetics at Duke; and Wayne Grant and Derek R. Duckett of the Translational Research Institute, The Scripps Research Institute, Jupiter, Fla..

The study was supported by the Howard Hughes Medical Institute.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>