Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Resource for Advanced Biofuels Research

24.06.2014

Researchers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have unveiled the first glycosyltransferase clone collection specifically targeted for the study of the biosynthesis of plant cell walls.

The idea behind what is being called “the JBEI GT Collection” is to provide a functional genomic resource for researchers seeking to extract the sugars in plant biomass and synthesize them into clean, green and renewable transportation fuels.


The JBEI GT Collection, the first glycosyltransferase clone collection specifically targeted for the study of plant cell wall biosynthesis, features GT clones of rice (shown here) and Arabidopsis plants. (Photo by Roy Kaltschmidt)

Glycosyltransferases (GTs) are enzymes that catalyze the connection of simple monosaccharide sugars into the complex polysaccharide sugars that are essential to a wide range of plant cell structures and processes. While it is known that plants have evolved large families of GTs, the chemical nature of these enzymes is such that the specific functions of most GTs remain largely unknown. This is a major drawback for bioenergy research where the goal is to modify plant biomass for maximum fuel yields.

To address this problem, especially as it pertains to cell wall biosynthesis, a large team of JBEI researchers, led by Joshua Heazlewood, director of JBEI’s Plant Systems Biology program, has cloned and verified a clone library consisting of 403 Arabidopsis GTs and 96 rice GTs. In plant biology, Arabidopsis is the reference plant for species like poplar, and rice the reference plant for grasses.

“Using the unique infrastructure and resources at JBEI, we have provided a collection of high quality GT clones, all of which have been verified by sequencing and are available in easy to use cassettes,” Heazelwood says. “We’re making this entire collection available to the plant research community and expect it to drive our basic understanding of GTs and enable the manipulation of cell walls.”

In addition to the clones for Arabidopsis and rice GTs, Heazlewood and his collaborators at JBEI also created a set of highly efficient particle bombardment plasmids – pBullets – which are plasmids shot into a cell to mark the location of targeted proteins. The JBEI pBullets are constructed with markers for the plant endomembrane system, the collection of membranes that separates a cell’s functional and structural compartments.

“Our pBullet vector series is custom designed for efficient bombardment,” Heazlewood says. “Researchers generally use large unwieldy plasmids that perform badly when it comes to localizing proteins.”

While the 403 Arabidopsis clones represent approximately 88-percent of the defined Arabidopsis GTs, the 96 rice clones represent only 15-percent of the defined rice GTs. JBEI researchers are now working to expand this. Both the JBEI GT Collection and pBullet vector series are available to the research community through various outlets. For more information visit the Website at http://gt.jbei.org/

Heazlewood and his collaborators have published a paper on the JBEI GT Collection in The Plant Journal. The paper is titled “The Plant Glycosyltransferase Clone Collection for Functional Genomics.” Co-authors were Jeemeng Lao, Ai Oikawa, Jennifer Bromley, Peter McInerney, Anongpat Suttangkakul, Andreia Smith-Moritz, Hector Plahar, Tsan-Yu Chiu, Susana González Fernández-Niño, Berit Ebert, Fan Yang, Katy Christiansen, Sara Hansen, Solomon Stonebloom, Paul  Adams, Pamela Ronald, Nathan Hillson, Masood Hadi, Miguel Vega-Sánchez, Dominique Loqué and Henrik Scheller.

This research was funded by the U.S. Department of Energy’s Office of Science.

Additional Information For more about the Joint BioEnergy Institute go here

Lynn Yarris | Eurek Alert!
Further information:
https://newscenter.lbl.gov/2014/06/23/the-jbei-gt-collection/

Further reports about: Arabidopsis Biofuels Biology Clone Plant fuels polysaccharide proteins species structures vector

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>