Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new look at thyroid diseases


Thyroid disorders are frequently found in about one-third of the adult population in Germany. In a research project of the German Research Foundation (DFG), scientists at Jacobs University are asking how the healthy thyroid works. Their findings might help adapting diagnosis and therapy of thyroid diseases.

The little butterfly-shaped organ is a powerhouse. A thyroid that releases too much or too little hormone can trigger a wide variety of health problems: For example cardiovascular disease, osteoporosis, morbid obesity, or immune diseases. The organ can also play a role in depression.

Photo information: They discover how a healthy thyroid works: Maren Rehders, Professor Klaudia Brix, Vaishnavi Venugopalan und Maria Qatato from Jacobs University (from left to right).

Photo: Jacobs University

“The importance of a healthy thyroid has been known for more than 100 years. All the more astounding that there are some aspects about the functioning of this organ and its interaction with other organs that are still unknown,” says Klaudia Brix, Professor of Cell Biology at Jacobs University. She and her team now hope to close some of these gaps in knowledge.

“Thyroid Trans Act” is the DFG-supported priority program SPP 1629 coordinated by Klaudia Brix at Jacobs University, Professor Heike Biebermann at the Charité in Berlin, and Professor Dagmar Führer at the Essen University Medical Center. A total of 18 research institutes throughout Germany are participating.

“We come from very different research institutions, but we have the same goal: We want to understand better how the thyroid functions. That connects us,” says Vaishnavi Venugopalan, one of the young scientists on the project team at Jacobs University. “The collaboration with other research institutions is really good,” adds her colleague Maren Rehders. “It is a very open, collegial exchange, without any competition thinking.”

Like other research teams at Jacobs University, the thyroid researchers also comprise an international community: Vaishnavi Venugopalan comes from India, Maren Rehders and Klaudia Brix from Germany, their colleagues Maria Qatato and Joanna Szumska from Palestine and Poland. An intercultural team in an interdisciplinary research community pursuing complex problems. “It is exciting to do research in such an environment, and on a topic that is important to so many people,” says Maria Qatato.

The researchers are focusing particularly on the so-called thyroid hormone transport molecules. “For a long time, it was believed that the thyroid hormones simply diffuse from the circulatory system into the cells of individual target organs,” explains Klaudia Brix. In the meantime, we know that the route of uptake into the cells is substantially more complex. Because there are transport proteins in the cell membrane. They ensure that the hormones get into the respective target cells, or that they can be released from the thyroid cells into the blood. An impaired function of these thyroid hormone transport proteins can have major effects on health.”

This finding is approximately 15-years old finding, and it has led to new scientific interest in the thyroid gland. “The important notion here is not just the question of how many hormones the thyroid produces but also how they are taken up at the destination, meaning by the cells of the respective thyroid hormone target organ. Our approach is therefore not to consider the thyroid in isolation but also to get a better understanding of those cell functions that are directed by thyroid hormones.”

The complexity of the interactions among the thyroid and the metabolism of the body are shown, for example, by the thyronamines. These are molecules derived from the classical thyroid hormones. They are generated from the thyroid hormones by specific biochemical processes. In human organs, the derivatives resulting from such transformation processes may exert effects that are opposite to those of the classic thyroid hormones. For instance, a hormone that leads to elevated blood pressure, may in some circumstances have as a counterpart a thyronamine that lowers blood pressure. Brix speaks of a precision regulated balance. “Like in a scale.”

What does it mean for people, when this balance no longer exists? The researchers at Jacobs University are confident that the discovery of thyronamines can lay the cornerstone to a better understanding of some metabolic pathways. But they also know that these are part of complex interrelationships. “Before we can think about new drugs, we have to understand even better the concentration and precise composition of the thyronamines in the body,” says Klaudia Brix. “We are convinced: The better we succeed in doing so, the more it will be possible to provide targeted therapy to people with thyroid disorders. That prospect, in particular, is motivating.“

Additional information:

Questions will be answered by:
Prof. Dr. Klaudia Brix| Professor of Cell Biology | Tel.: +49 421 200- 3246

About Jacobs University:
Jacobs University is a private, independent, English-language university in Bremen. Young people from all over the world study here in preparatory, Bachelor, Master, and PhD programs. Internationality and transdisciplinarity are special features of Jacobs University: research and teaching don’t just pursue a single approach, they address issues from the perspectives of multiple disciplines. This principle makes Jacobs graduates highly sought-after new talents who successfully strike out on international career paths.

Kristina Logemann | Brand Management, Marketing & Communications | Tel.: +49 421 200-4454

Kristina Logemann | idw - Informationsdienst Wissenschaft

Further reports about: Biology blood pressure proteins thyroid hormone

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>