Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a century after the Gold Rush, mining an historical park’s lichen diversity

21.10.2010
Alaska may be staking out yet another claim to a natural treasure, but one which does not immediately meet the eye.

In article appearing in October in the journal The Bryologist, a team of researchers from Austria, Norway, Spain and the United States report the highest diversity of lichens found anywhere on the North American continent from the Klondike Gold Rush National Historical Park (KLGO).


Located at the headwaters of the longest fjord in southeast Alaska, an area of only 13,000 acres (53 square kilometers) harbors the highest number of lichens and associated fungi ever found in an area of comparable size: 766 species in two slivers of land along the 1898-99 Gold Rush trails out of Skagway and Dyea, Alaska.

While lichen surveys have been completed for only a few national parks in North America, the Klondike survey, funded by the U.S. National Park Service, is notable for edging out some much larger National Parks, including 300 more species than either Yellowstone, Glacier and Great Smoky Mountains National Parks. Indeed, the Klondike study has the ninth highest number of species of any lichen survey ever conducted worldwide in an area under 10,000 square kilometers.

Perhaps most surprisingly, however, fully seventy-five species – nearly 10% of all species found – are candidates for being new to science because they do not match any known species in a global literature review. Among the notable finds, the authors discovered a new genus of lichens with similarities to rock-dwelling genus Steinera in New Zealand and subantarctic islands. They name the genus Steineropsis, meaning ‘looking like Steinera’. The authors describe another species, Coccotrema hahriae, in honor of Meg Hahr, the former natural resources program manager of Klondike Gold Rush National Historical Park, who passed away last year. Altogether five new species for science are described in the current paper.

“This is like uncovering a biodiversity hotspot on the order of some of the lost forests in New Guinea or Mozambique” says the principal investigator, Toby Spribille (shpruh-BILL-uh), a Montana, U.S.A. native and current graduate student at the University of Graz, Austria. Spribille, together with his collaborators from the Spanish National Research Council, Madrid, and the University of Bergen, Norway, also highlight the significance of finding a biodiversity hotspot at high latitudes. “It’s generally assumed biodiversity declines as you move towards the poles, but this has so far not been the case for lichens”. He notes that lichens, which are a symbiosis between a fungus and an alga, have been shown to reach optimum growth conditions at cool temperatures and thus could be expected to peak in diversity in cool climates. The Klondike study also includes a first-ever overview of top lichen biodiversity studies worldwide. This showed that all of the other top lichen inventories in the world to date have come from middle to high latitudes, unlike in many other organism groups, in which the highest diversity is typically in the tropics.

“This is important information to tie into climate change research”, says Spribille. “The high latitudes are where the warming in the next century is expected to be the greatest, and while single species like the polar bear are considered threatened by the loss of arctic habitats, climate change is not usually getting translated into potential effects on large numbers of species.” This view may begin to change, he predicts, as scientists discover that peak biodiversity for groups such as lichens may historically reside in the cool, damp forests and tundra of the north.

Article: Lichens and lichenicolous fungi of the Klondike Gold Rush National Historic Park, Alaska, U.S.A. The Bryologist 113(3): 439-515. Will appear in print on or about Oct. 18, 2010 (Allen Press; http://www.bioone.org/toc/bryo/113/3)

For more information contact: Dave Schirokauer, 907-983-9228; dave_schirokauer@nps.gov

or: Toby Spribille: tspribi@gwdg.de

Gudrun Pichler | idw
Further information:
http://www.bioone.org/toc/bryo/113/3
http://www.uni-graz.at

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>