Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using a 'systems biology' approach to look under the hood of an aggressive form of breast cancer

29.07.2011
Study is the first to examine how blood protein levels change as cancer develops -- long before the disease is clinically detectable

Using a "systems biology" approach – which focuses on understanding the complex relationships between biological systems – to look under the hood of an aggressive form of breast cancer, researchers for the first time have identified a set of proteins in the blood that change in abundance long before the cancer is clinically detectable. The findings, by co-authors Christopher Kemp, Ph.D., and Samir Hanash, M.D., Ph.D., members of Fred Hutchinson Cancer Research Center's Human Biology and Public Health Sciences divisions, respectively, are published online ahead of the Aug. 1 print issue of Cancer Research.

Studying a mouse model of HER2-positive breast cancer (cancer that tests positive for a protein called human epidermal growth factor receptor 2) at various stages of tumor development and remission, the researchers found that even at the very earliest stages the incipient tumor cells communicate to normal tissues of the host by sending out signals and recruiting cells, while the host tissues in turn respond to and amplify the signals.

"It is really a 'systems biology' study of cancer, in that we simultaneously examined many genes and proteins over time – not just in the tumor but in blood and host tissues." Kemp said. "The overall surprising thing we found was the degree to which the host responds to cancer early in the course of disease progression, and the extent of that response. While a mouse – or presumably a human – with early-stage cancer may appear normal, our study shows that there are many changes occurring long before the disease can be detected clinically. This gives us hope that we should be able to identify those changes and use them as early detection tools with the ultimate goal of more effective intervention."

Traditionally, it has been thought that tumor cells shed telltale proteins into the blood or elicit an immune response that can lead to changes in blood-protein levels. "What is new here is that the predominant protein signals we see in blood originate from complex interactions and crosstalk between the tumor cells and the local host microenvironment," Kemp said.

Until now, such tumor/host interactions have been primarily studied one gene at a time locally, within the tumor; this is the first study to monitor the systemic response to cancer in a preclinical tumor model, tracking the abundance of cancer-related proteins throughout tumor induction, growth, and regression. Of approximately 500 proteins detected, up to a third changed in abundance; the number increased with cancer growth and decreased with tumor regression.

"We found a treasure trove of proteins that are involved in a variety of mechanisms related to cancer development, from the formation of blood vessels that feed tumors to signatures of early cancer spread, or metastasis," Kemp said.

Proteins associated with wound repair were most prevalent during the earliest stages of cancer growth, which could point to a potential target for early cancer detection. "Rather than blindly search for cancer biomarkers, an approach based on comprehensive understanding of the systems biology of the disease process is likely to increase the chances to identify blood-based biomarkers that will work in the clinic," Kemp said.

The next steps will involve selecting the most promising protein candidates found in mice and determining whether the same circulating proteins are markers of early breast cancer development in humans, with the ultimate goal of designing a blood test for earlier breast cancer detection.

The Paul G. Allen Family Foundation, the National Cancer Institute Mouse Models of Human Cancer Consortium and the Canary Foundation funded the research.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>